tornavis/source/blender/blenkernel/intern/armature.c

3120 lines
96 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup bke
*/
#include <ctype.h>
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "BLI_alloca.h"
#include "BLI_ghash.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_string.h"
#include "BLI_task.h"
#include "BLI_utildefines.h"
#include "BLT_translation.h"
#include "DNA_anim_types.h"
#include "DNA_armature_types.h"
#include "DNA_constraint_types.h"
#include "DNA_gpencil_types.h"
#include "DNA_lattice_types.h"
#include "DNA_listBase.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "BKE_action.h"
#include "BKE_anim_visualization.h"
#include "BKE_armature.h"
#include "BKE_constraint.h"
#include "BKE_curve.h"
#include "BKE_deform.h"
#include "BKE_displist.h"
#include "BKE_idprop.h"
#include "BKE_idtype.h"
#include "BKE_lattice.h"
#include "BKE_lib_id.h"
#include "BKE_main.h"
#include "BKE_object.h"
#include "BKE_scene.h"
#include "DEG_depsgraph_build.h"
#include "BIK_api.h"
#include "atomic_ops.h"
#include "CLG_log.h"
static CLG_LogRef LOG = {"bke.armature"};
/*************************** Prototypes ***************************/
static void copy_bonechildren(Bone *bone_dst,
const Bone *bone_src,
const Bone *bone_src_act,
Bone **r_bone_dst_act,
const int flag);
static void copy_bonechildren_custom_handles(Bone *bone_dst, bArmature *arm_dst);
/*********************** Armature Datablock ***********************/
/**
* Only copy internal data of Armature ID from source
* to already allocated/initialized destination.
* You probably never want to use that directly,
* use #BKE_id_copy or #BKE_id_copy_ex for typical needs.
*
* WARNING! This function will not handle ID user count!
*
* \param flag: Copying options (see BKE_lib_id.h's LIB_ID_COPY_... flags for more).
*/
static void armature_copy_data(Main *UNUSED(bmain), ID *id_dst, const ID *id_src, const int flag)
{
bArmature *armature_dst = (bArmature *)id_dst;
const bArmature *armature_src = (const bArmature *)id_src;
Bone *bone_src, *bone_dst;
Bone *bone_dst_act = NULL;
/* We never handle usercount here for own data. */
const int flag_subdata = flag | LIB_ID_CREATE_NO_USER_REFCOUNT;
armature_dst->bonehash = NULL;
BLI_duplicatelist(&armature_dst->bonebase, &armature_src->bonebase);
/* Duplicate the childrens' lists */
bone_dst = armature_dst->bonebase.first;
for (bone_src = armature_src->bonebase.first; bone_src; bone_src = bone_src->next) {
bone_dst->parent = NULL;
copy_bonechildren(bone_dst, bone_src, armature_src->act_bone, &bone_dst_act, flag_subdata);
bone_dst = bone_dst->next;
}
armature_dst->act_bone = bone_dst_act;
BKE_armature_bone_hash_make(armature_dst);
/* Fix custom handle references. */
for (bone_dst = armature_dst->bonebase.first; bone_dst; bone_dst = bone_dst->next) {
copy_bonechildren_custom_handles(bone_dst, armature_dst);
}
armature_dst->edbo = NULL;
armature_dst->act_edbone = NULL;
}
/** Free (or release) any data used by this armature (does not free the armature itself). */
static void armature_free_data(struct ID *id)
{
bArmature *armature = (bArmature *)id;
BKE_armature_bone_hash_free(armature);
BKE_armature_bonelist_free(&armature->bonebase);
/* free editmode data */
if (armature->edbo) {
BLI_freelistN(armature->edbo);
MEM_freeN(armature->edbo);
armature->edbo = NULL;
}
}
IDTypeInfo IDType_ID_AR = {
.id_code = ID_AR,
.id_filter = FILTER_ID_AR,
.main_listbase_index = INDEX_ID_AR,
.struct_size = sizeof(bArmature),
.name = "Armature",
.name_plural = "armatures",
.translation_context = BLT_I18NCONTEXT_ID_ARMATURE,
.flags = 0,
.init_data = NULL,
.copy_data = armature_copy_data,
.free_data = armature_free_data,
.make_local = NULL,
};
/* **************** Generic Functions, data level *************** */
bArmature *BKE_armature_add(Main *bmain, const char *name)
{
bArmature *arm;
arm = BKE_libblock_alloc(bmain, ID_AR, name, 0);
arm->deformflag = ARM_DEF_VGROUP | ARM_DEF_ENVELOPE;
arm->flag = ARM_COL_CUSTOM; /* custom bone-group colors */
arm->layer = 1;
return arm;
}
bArmature *BKE_armature_from_object(Object *ob)
{
if (ob->type == OB_ARMATURE) {
return (bArmature *)ob->data;
}
return NULL;
}
int BKE_armature_bonelist_count(ListBase *lb)
{
int i = 0;
LISTBASE_FOREACH (Bone *, bone, lb) {
i += 1 + BKE_armature_bonelist_count(&bone->childbase);
}
return i;
}
void BKE_armature_bonelist_free(ListBase *lb)
{
Bone *bone;
for (bone = lb->first; bone; bone = bone->next) {
if (bone->prop) {
IDP_FreeProperty(bone->prop);
}
BKE_armature_bonelist_free(&bone->childbase);
}
BLI_freelistN(lb);
}
static void copy_bonechildren(Bone *bone_dst,
const Bone *bone_src,
const Bone *bone_src_act,
Bone **r_bone_dst_act,
const int flag)
{
Bone *bone_src_child, *bone_dst_child;
if (bone_src == bone_src_act) {
*r_bone_dst_act = bone_dst;
}
if (bone_src->prop) {
bone_dst->prop = IDP_CopyProperty_ex(bone_src->prop, flag);
}
/* Copy this bone's list */
BLI_duplicatelist(&bone_dst->childbase, &bone_src->childbase);
/* For each child in the list, update it's children */
for (bone_src_child = bone_src->childbase.first, bone_dst_child = bone_dst->childbase.first;
bone_src_child;
bone_src_child = bone_src_child->next, bone_dst_child = bone_dst_child->next) {
bone_dst_child->parent = bone_dst;
copy_bonechildren(bone_dst_child, bone_src_child, bone_src_act, r_bone_dst_act, flag);
}
}
static void copy_bonechildren_custom_handles(Bone *bone_dst, bArmature *arm_dst)
{
Bone *bone_dst_child;
if (bone_dst->bbone_prev) {
bone_dst->bbone_prev = BKE_armature_find_bone_name(arm_dst, bone_dst->bbone_prev->name);
}
if (bone_dst->bbone_next) {
bone_dst->bbone_next = BKE_armature_find_bone_name(arm_dst, bone_dst->bbone_next->name);
}
for (bone_dst_child = bone_dst->childbase.first; bone_dst_child;
bone_dst_child = bone_dst_child->next) {
copy_bonechildren_custom_handles(bone_dst_child, arm_dst);
}
}
bArmature *BKE_armature_copy(Main *bmain, const bArmature *arm)
{
bArmature *arm_copy;
BKE_id_copy(bmain, &arm->id, (ID **)&arm_copy);
return arm_copy;
}
static void copy_bone_transform(Bone *bone_dst, const Bone *bone_src)
{
bone_dst->roll = bone_src->roll;
copy_v3_v3(bone_dst->head, bone_src->head);
copy_v3_v3(bone_dst->tail, bone_src->tail);
copy_m3_m3(bone_dst->bone_mat, bone_src->bone_mat);
copy_v3_v3(bone_dst->arm_head, bone_src->arm_head);
copy_v3_v3(bone_dst->arm_tail, bone_src->arm_tail);
copy_m4_m4(bone_dst->arm_mat, bone_src->arm_mat);
bone_dst->arm_roll = bone_src->arm_roll;
}
void BKE_armature_copy_bone_transforms(bArmature *armature_dst, const bArmature *armature_src)
{
Bone *bone_dst = armature_dst->bonebase.first;
const Bone *bone_src = armature_src->bonebase.first;
while (bone_dst != NULL) {
BLI_assert(bone_src != NULL);
copy_bone_transform(bone_dst, bone_src);
bone_dst = bone_dst->next;
bone_src = bone_src->next;
}
}
/** Helper for #ED_armature_transform */
static void armature_transform_recurse(ListBase *bonebase,
const float mat[4][4],
const bool do_props,
/* Cached from 'mat'. */
const float mat3[3][3],
const float scale,
/* Child bones. */
const Bone *bone_parent,
const float arm_mat_parent_inv[4][4])
{
LISTBASE_FOREACH (Bone *, bone, bonebase) {
/* Store the initial bone roll in a matrix, this is needed even for child bones
* so any change in head/tail doesn't cause the roll to change.
*
* Logic here is different to edit-mode because
* this is calculated in relative to the parent. */
float roll_mat3_pre[3][3];
{
float delta[3];
sub_v3_v3v3(delta, bone->tail, bone->head);
vec_roll_to_mat3(delta, bone->roll, roll_mat3_pre);
if (bone->parent == NULL) {
mul_m3_m3m3(roll_mat3_pre, mat3, roll_mat3_pre);
}
}
/* Optional, use this for predictable results since the roll is re-calculated below anyway. */
bone->roll = 0.0f;
mul_m4_v3(mat, bone->arm_head);
mul_m4_v3(mat, bone->arm_tail);
/* Get the new head and tail */
if (bone_parent) {
sub_v3_v3v3(bone->head, bone->arm_head, bone_parent->arm_tail);
sub_v3_v3v3(bone->tail, bone->arm_tail, bone_parent->arm_tail);
mul_mat3_m4_v3(arm_mat_parent_inv, bone->head);
mul_mat3_m4_v3(arm_mat_parent_inv, bone->tail);
}
else {
copy_v3_v3(bone->head, bone->arm_head);
copy_v3_v3(bone->tail, bone->arm_tail);
}
/* Now the head/tail have been updated, set the roll back, matching 'roll_mat3_pre'. */
{
float roll_mat3_post[3][3], delta_mat3[3][3];
float delta[3];
sub_v3_v3v3(delta, bone->tail, bone->head);
vec_roll_to_mat3(delta, 0.0f, roll_mat3_post);
invert_m3(roll_mat3_post);
mul_m3_m3m3(delta_mat3, roll_mat3_post, roll_mat3_pre);
bone->roll = atan2f(delta_mat3[2][0], delta_mat3[2][2]);
}
BKE_armature_where_is_bone(bone, bone_parent, false);
{
float arm_mat3[3][3];
copy_m3_m4(arm_mat3, bone->arm_mat);
mat3_to_vec_roll(arm_mat3, NULL, &bone->arm_roll);
}
if (do_props) {
bone->rad_head *= scale;
bone->rad_tail *= scale;
bone->dist *= scale;
/* we could be smarter and scale by the matrix along the x & z axis */
bone->xwidth *= scale;
bone->zwidth *= scale;
}
if (!BLI_listbase_is_empty(&bone->childbase)) {
float arm_mat_inv[4][4];
invert_m4_m4(arm_mat_inv, bone->arm_mat);
armature_transform_recurse(&bone->childbase, mat, do_props, mat3, scale, bone, arm_mat_inv);
}
}
}
void BKE_armature_transform(bArmature *arm, const float mat[4][4], const bool do_props)
{
/* Store the scale of the matrix here to use on envelopes. */
float scale = mat4_to_scale(mat);
float mat3[3][3];
copy_m3_m4(mat3, mat);
normalize_m3(mat3);
armature_transform_recurse(&arm->bonebase, mat, do_props, mat3, scale, NULL, NULL);
}
static Bone *get_named_bone_bonechildren(ListBase *lb, const char *name)
{
Bone *curBone, *rbone;
for (curBone = lb->first; curBone; curBone = curBone->next) {
if (STREQ(curBone->name, name)) {
return curBone;
}
rbone = get_named_bone_bonechildren(&curBone->childbase, name);
if (rbone) {
return rbone;
}
}
return NULL;
}
/**
* Walk the list until the bone is found (slow!),
* use #BKE_armature_bone_from_name_map for multiple lookups.
*/
Bone *BKE_armature_find_bone_name(bArmature *arm, const char *name)
{
if (!arm) {
return NULL;
}
if (arm->bonehash) {
return BLI_ghash_lookup(arm->bonehash, name);
}
return get_named_bone_bonechildren(&arm->bonebase, name);
}
static void armature_bone_from_name_insert_recursive(GHash *bone_hash, ListBase *lb)
{
LISTBASE_FOREACH (Bone *, bone, lb) {
BLI_ghash_insert(bone_hash, bone->name, bone);
armature_bone_from_name_insert_recursive(bone_hash, &bone->childbase);
}
}
/**
* Create a (name -> bone) map.
*
* \note typically #bPose.chanhash us used via #BKE_pose_channel_find_name
* this is for the cases we can't use pose channels.
*/
static GHash *armature_bone_from_name_map(bArmature *arm)
{
const int bones_count = BKE_armature_bonelist_count(&arm->bonebase);
GHash *bone_hash = BLI_ghash_str_new_ex(__func__, bones_count);
armature_bone_from_name_insert_recursive(bone_hash, &arm->bonebase);
return bone_hash;
}
void BKE_armature_bone_hash_make(bArmature *arm)
{
if (!arm->bonehash) {
arm->bonehash = armature_bone_from_name_map(arm);
}
}
void BKE_armature_bone_hash_free(bArmature *arm)
{
if (arm->bonehash) {
BLI_ghash_free(arm->bonehash, NULL, NULL);
arm->bonehash = NULL;
}
}
bool BKE_armature_bone_flag_test_recursive(const Bone *bone, int flag)
{
if (bone->flag & flag) {
return true;
}
else if (bone->parent) {
return BKE_armature_bone_flag_test_recursive(bone->parent, flag);
}
else {
return false;
}
}
static void armature_refresh_layer_used_recursive(bArmature *arm, ListBase *bones)
{
LISTBASE_FOREACH (Bone *, bone, bones) {
arm->layer_used |= bone->layer;
armature_refresh_layer_used_recursive(arm, &bone->childbase);
}
}
/* Update the layers_used variable after bones are moved between layer
* NOTE: Used to be done in drawing code in 2.7, but that won't work with
* Copy-on-Write, as drawing uses evaluated copies.
*/
void BKE_armature_refresh_layer_used(bArmature *arm)
{
arm->layer_used = 0;
armature_refresh_layer_used_recursive(arm, &arm->bonebase);
}
/* Finds the best possible extension to the name on a particular axis. (For renaming, check for
* unique names afterwards) strip_number: removes number extensions (TODO: not used)
* axis: the axis to name on
* head/tail: the head/tail co-ordinate of the bone on the specified axis */
int bone_autoside_name(
char name[MAXBONENAME], int UNUSED(strip_number), short axis, float head, float tail)
{
unsigned int len;
char basename[MAXBONENAME] = "";
char extension[5] = "";
len = strlen(name);
if (len == 0) {
return 0;
}
BLI_strncpy(basename, name, sizeof(basename));
/* Figure out extension to append:
* - The extension to append is based upon the axis that we are working on.
* - If head happens to be on 0, then we must consider the tail position as well to decide
* which side the bone is on
* -> If tail is 0, then it's bone is considered to be on axis, so no extension should be added
* -> Otherwise, extension is added from perspective of object based on which side tail goes to
* - If head is non-zero, extension is added from perspective of object based on side head is on
*/
if (axis == 2) {
/* z-axis - vertical (top/bottom) */
if (IS_EQF(head, 0.0f)) {
if (tail < 0) {
strcpy(extension, "Bot");
}
else if (tail > 0) {
strcpy(extension, "Top");
}
}
else {
if (head < 0) {
strcpy(extension, "Bot");
}
else {
strcpy(extension, "Top");
}
}
}
else if (axis == 1) {
/* y-axis - depth (front/back) */
if (IS_EQF(head, 0.0f)) {
if (tail < 0) {
strcpy(extension, "Fr");
}
else if (tail > 0) {
strcpy(extension, "Bk");
}
}
else {
if (head < 0) {
strcpy(extension, "Fr");
}
else {
strcpy(extension, "Bk");
}
}
}
else {
/* x-axis - horizontal (left/right) */
if (IS_EQF(head, 0.0f)) {
if (tail < 0) {
strcpy(extension, "R");
}
else if (tail > 0) {
strcpy(extension, "L");
}
}
else {
if (head < 0) {
strcpy(extension, "R");
/* XXX Shouldn't this be simple else, as for z and y axes? */
}
else if (head > 0) {
strcpy(extension, "L");
}
}
}
/* Simple name truncation
* - truncate if there is an extension and it wouldn't be able to fit
* - otherwise, just append to end
*/
if (extension[0]) {
bool changed = true;
while (changed) { /* remove extensions */
changed = false;
if (len > 2 && basename[len - 2] == '.') {
if (basename[len - 1] == 'L' || basename[len - 1] == 'R') { /* L R */
basename[len - 2] = '\0';
len -= 2;
changed = true;
}
}
else if (len > 3 && basename[len - 3] == '.') {
if ((basename[len - 2] == 'F' && basename[len - 1] == 'r') || /* Fr */
(basename[len - 2] == 'B' && basename[len - 1] == 'k')) /* Bk */
{
basename[len - 3] = '\0';
len -= 3;
changed = true;
}
}
else if (len > 4 && basename[len - 4] == '.') {
if ((basename[len - 3] == 'T' && basename[len - 2] == 'o' &&
basename[len - 1] == 'p') || /* Top */
(basename[len - 3] == 'B' && basename[len - 2] == 'o' &&
basename[len - 1] == 't')) /* Bot */
{
basename[len - 4] = '\0';
len -= 4;
changed = true;
}
}
}
if ((MAXBONENAME - len) < strlen(extension) + 1) { /* add 1 for the '.' */
strncpy(name, basename, len - strlen(extension));
}
BLI_snprintf(name, MAXBONENAME, "%s.%s", basename, extension);
return 1;
}
else {
return 0;
}
}
/* ************* B-Bone support ******************* */
/* Compute a set of bezier parameter values that produce approximately equally spaced points. */
static void equalize_cubic_bezier(const float control[4][3],
int temp_segments,
int final_segments,
float *r_t_points)
{
float(*coords)[3] = BLI_array_alloca(coords, temp_segments + 1);
float *pdist = BLI_array_alloca(pdist, temp_segments + 1);
/* Compute the first pass of bezier point coordinates. */
for (int i = 0; i < 3; i++) {
BKE_curve_forward_diff_bezier(control[0][i],
control[1][i],
control[2][i],
control[3][i],
&coords[0][i],
temp_segments,
sizeof(*coords));
}
/* Calculate the length of the polyline at each point. */
pdist[0] = 0.0f;
for (int i = 0; i < temp_segments; i++) {
pdist[i + 1] = pdist[i] + len_v3v3(coords[i], coords[i + 1]);
}
/* Go over distances and calculate new parameter values. */
float dist_step = pdist[temp_segments] / final_segments;
r_t_points[0] = 0.0f;
for (int i = 1, nr = 1; i <= final_segments; i++) {
float dist = i * dist_step;
/* We're looking for location (distance) 'dist' in the array. */
while ((nr < temp_segments) && (dist >= pdist[nr])) {
nr++;
}
float fac = (pdist[nr] - dist) / (pdist[nr] - pdist[nr - 1]);
r_t_points[i] = (nr - fac) / temp_segments;
}
r_t_points[final_segments] = 1.0f;
}
/* Evaluate bezier position and tangent at a specific parameter value
* using the De Casteljau algorithm. */
static void evaluate_cubic_bezier(const float control[4][3],
float t,
float r_pos[3],
float r_tangent[3])
{
float layer1[3][3];
interp_v3_v3v3(layer1[0], control[0], control[1], t);
interp_v3_v3v3(layer1[1], control[1], control[2], t);
interp_v3_v3v3(layer1[2], control[2], control[3], t);
float layer2[2][3];
interp_v3_v3v3(layer2[0], layer1[0], layer1[1], t);
interp_v3_v3v3(layer2[1], layer1[1], layer1[2], t);
sub_v3_v3v3(r_tangent, layer2[1], layer2[0]);
madd_v3_v3v3fl(r_pos, layer2[0], r_tangent, t);
}
/* Get "next" and "prev" bones - these are used for handle calculations. */
void BKE_pchan_bbone_handles_get(bPoseChannel *pchan, bPoseChannel **r_prev, bPoseChannel **r_next)
{
if (pchan->bone->bbone_prev_type == BBONE_HANDLE_AUTO) {
/* Use connected parent. */
if (pchan->bone->flag & BONE_CONNECTED) {
*r_prev = pchan->parent;
}
else {
*r_prev = NULL;
}
}
else {
/* Use the provided bone as prev - leave blank to eliminate this effect altogether. */
*r_prev = pchan->bbone_prev;
}
if (pchan->bone->bbone_next_type == BBONE_HANDLE_AUTO) {
/* Use connected child. */
*r_next = pchan->child;
}
else {
/* Use the provided bone as next - leave blank to eliminate this effect altogether. */
*r_next = pchan->bbone_next;
}
}
/* Compute B-Bone spline parameters for the given channel. */
void BKE_pchan_bbone_spline_params_get(struct bPoseChannel *pchan,
const bool rest,
struct BBoneSplineParameters *param)
{
bPoseChannel *next, *prev;
Bone *bone = pchan->bone;
float imat[4][4], posemat[4][4];
float delta[3];
memset(param, 0, sizeof(*param));
param->segments = bone->segments;
param->length = bone->length;
if (!rest) {
float scale[3];
/* Check if we need to take non-uniform bone scaling into account. */
mat4_to_size(scale, pchan->pose_mat);
if (fabsf(scale[0] - scale[1]) > 1e-6f || fabsf(scale[1] - scale[2]) > 1e-6f) {
param->do_scale = true;
copy_v3_v3(param->scale, scale);
}
}
BKE_pchan_bbone_handles_get(pchan, &prev, &next);
/* Find the handle points, since this is inside bone space, the
* first point = (0, 0, 0)
* last point = (0, length, 0) */
if (rest) {
invert_m4_m4(imat, pchan->bone->arm_mat);
}
else if (param->do_scale) {
copy_m4_m4(posemat, pchan->pose_mat);
normalize_m4(posemat);
invert_m4_m4(imat, posemat);
}
else {
invert_m4_m4(imat, pchan->pose_mat);
}
if (prev) {
float h1[3];
bool done = false;
param->use_prev = true;
/* Transform previous point inside this bone space. */
if (bone->bbone_prev_type == BBONE_HANDLE_RELATIVE) {
/* Use delta movement (from restpose), and apply this relative to the current bone's head. */
if (rest) {
/* In restpose, arm_head == pose_head */
zero_v3(param->prev_h);
done = true;
}
else {
sub_v3_v3v3(delta, prev->pose_head, prev->bone->arm_head);
sub_v3_v3v3(h1, pchan->pose_head, delta);
}
}
else if (bone->bbone_prev_type == BBONE_HANDLE_TANGENT) {
/* Use bone direction by offsetting so that its tail meets current bone's head */
if (rest) {
sub_v3_v3v3(delta, prev->bone->arm_tail, prev->bone->arm_head);
sub_v3_v3v3(h1, bone->arm_head, delta);
}
else {
sub_v3_v3v3(delta, prev->pose_tail, prev->pose_head);
sub_v3_v3v3(h1, pchan->pose_head, delta);
}
}
else {
/* Apply special handling for smoothly joining B-Bone chains */
param->prev_bbone = (prev->bone->segments > 1);
/* Use bone head as absolute position. */
copy_v3_v3(h1, rest ? prev->bone->arm_head : prev->pose_head);
}
if (!done) {
mul_v3_m4v3(param->prev_h, imat, h1);
}
if (!param->prev_bbone) {
/* Find the previous roll to interpolate. */
mul_m4_m4m4(param->prev_mat, imat, rest ? prev->bone->arm_mat : prev->pose_mat);
}
}
if (next) {
float h2[3];
bool done = false;
param->use_next = true;
/* Transform next point inside this bone space. */
if (bone->bbone_next_type == BBONE_HANDLE_RELATIVE) {
/* Use delta movement (from restpose), and apply this relative to the current bone's tail. */
if (rest) {
/* In restpose, arm_head == pose_head */
copy_v3_fl3(param->next_h, 0.0f, param->length, 0.0);
done = true;
}
else {
sub_v3_v3v3(delta, next->pose_head, next->bone->arm_head);
add_v3_v3v3(h2, pchan->pose_tail, delta);
}
}
else if (bone->bbone_next_type == BBONE_HANDLE_TANGENT) {
/* Use bone direction by offsetting so that its head meets current bone's tail */
if (rest) {
sub_v3_v3v3(delta, next->bone->arm_tail, next->bone->arm_head);
add_v3_v3v3(h2, bone->arm_tail, delta);
}
else {
sub_v3_v3v3(delta, next->pose_tail, next->pose_head);
add_v3_v3v3(h2, pchan->pose_tail, delta);
}
}
else {
/* Apply special handling for smoothly joining B-Bone chains */
param->next_bbone = (next->bone->segments > 1);
/* Use bone tail as absolute position. */
copy_v3_v3(h2, rest ? next->bone->arm_tail : next->pose_tail);
}
if (!done) {
mul_v3_m4v3(param->next_h, imat, h2);
}
/* Find the next roll to interpolate as well. */
mul_m4_m4m4(param->next_mat, imat, rest ? next->bone->arm_mat : next->pose_mat);
}
/* Add effects from bbone properties over the top
* - These properties allow users to hand-animate the
* bone curve/shape, without having to resort to using
* extra bones
* - The "bone" level offsets are for defining the restpose
* shape of the bone (e.g. for curved eyebrows for example).
* -> In the viewport, it's needed to define what the rest pose
* looks like
* -> For "rest == 0", we also still need to have it present
* so that we can "cancel out" this restpose when it comes
* time to deform some geometry, it won't cause double transforms.
* - The "pchan" level offsets are the ones that animators actually
* end up animating
*/
{
param->ease1 = bone->ease1 + (!rest ? pchan->ease1 : 0.0f);
param->ease2 = bone->ease2 + (!rest ? pchan->ease2 : 0.0f);
param->roll1 = bone->roll1 + (!rest ? pchan->roll1 : 0.0f);
param->roll2 = bone->roll2 + (!rest ? pchan->roll2 : 0.0f);
if (bone->flag & BONE_ADD_PARENT_END_ROLL) {
if (prev) {
if (prev->bone) {
param->roll1 += prev->bone->roll2;
}
if (!rest) {
param->roll1 += prev->roll2;
}
}
}
param->scale_in_x = bone->scale_in_x * (!rest ? pchan->scale_in_x : 1.0f);
param->scale_in_y = bone->scale_in_y * (!rest ? pchan->scale_in_y : 1.0f);
param->scale_out_x = bone->scale_out_x * (!rest ? pchan->scale_out_x : 1.0f);
param->scale_out_y = bone->scale_out_y * (!rest ? pchan->scale_out_y : 1.0f);
/* Extra curve x / y */
param->curve_in_x = bone->curve_in_x + (!rest ? pchan->curve_in_x : 0.0f);
param->curve_in_y = bone->curve_in_y + (!rest ? pchan->curve_in_y : 0.0f);
param->curve_out_x = bone->curve_out_x + (!rest ? pchan->curve_out_x : 0.0f);
param->curve_out_y = bone->curve_out_y + (!rest ? pchan->curve_out_y : 0.0f);
}
}
/* Fills the array with the desired amount of bone->segments elements.
* This calculation is done within unit bone space. */
void BKE_pchan_bbone_spline_setup(bPoseChannel *pchan,
const bool rest,
const bool for_deform,
Mat4 *result_array)
{
BBoneSplineParameters param;
BKE_pchan_bbone_spline_params_get(pchan, rest, &param);
pchan->bone->segments = BKE_pchan_bbone_spline_compute(&param, for_deform, result_array);
}
/* Computes the bezier handle vectors and rolls coming from custom handles. */
void BKE_pchan_bbone_handles_compute(const BBoneSplineParameters *param,
float h1[3],
float *r_roll1,
float h2[3],
float *r_roll2,
bool ease,
bool offsets)
{
float mat3[3][3];
float length = param->length;
float epsilon = 1e-5 * length;
if (param->do_scale) {
length *= param->scale[1];
}
*r_roll1 = *r_roll2 = 0.0f;
if (param->use_prev) {
copy_v3_v3(h1, param->prev_h);
if (param->prev_bbone) {
/* If previous bone is B-bone too, use average handle direction. */
h1[1] -= length;
}
if (normalize_v3(h1) < epsilon) {
copy_v3_fl3(h1, 0.0f, -1.0f, 0.0f);
}
negate_v3(h1);
if (!param->prev_bbone) {
/* Find the previous roll to interpolate. */
copy_m3_m4(mat3, param->prev_mat);
mat3_vec_to_roll(mat3, h1, r_roll1);
}
}
else {
h1[0] = 0.0f;
h1[1] = 1.0;
h1[2] = 0.0f;
}
if (param->use_next) {
copy_v3_v3(h2, param->next_h);
/* If next bone is B-bone too, use average handle direction. */
if (param->next_bbone) {
/* pass */
}
else {
h2[1] -= length;
}
if (normalize_v3(h2) < epsilon) {
copy_v3_fl3(h2, 0.0f, 1.0f, 0.0f);
}
/* Find the next roll to interpolate as well. */
copy_m3_m4(mat3, param->next_mat);
mat3_vec_to_roll(mat3, h2, r_roll2);
}
else {
h2[0] = 0.0f;
h2[1] = 1.0f;
h2[2] = 0.0f;
}
if (ease) {
const float circle_factor = length * (cubic_tangent_factor_circle_v3(h1, h2) / 0.75f);
const float hlength1 = param->ease1 * circle_factor;
const float hlength2 = param->ease2 * circle_factor;
/* and only now negate h2 */
mul_v3_fl(h1, hlength1);
mul_v3_fl(h2, -hlength2);
}
/* Add effects from bbone properties over the top
* - These properties allow users to hand-animate the
* bone curve/shape, without having to resort to using
* extra bones
* - The "bone" level offsets are for defining the rest-pose
* shape of the bone (e.g. for curved eyebrows for example).
* -> In the viewport, it's needed to define what the rest pose
* looks like
* -> For "rest == 0", we also still need to have it present
* so that we can "cancel out" this rest-pose when it comes
* time to deform some geometry, it won't cause double transforms.
* - The "pchan" level offsets are the ones that animators actually
* end up animating
*/
if (offsets) {
/* Add extra rolls. */
*r_roll1 += param->roll1;
*r_roll2 += param->roll2;
/* Extra curve x / y */
/* NOTE:
* Scale correction factors here are to compensate for some random floating-point glitches
* when scaling up the bone or it's parent by a factor of approximately 8.15/6, which results
* in the bone length getting scaled up too (from 1 to 8), causing the curve to flatten out.
*/
const float xscale_correction = (param->do_scale) ? param->scale[0] : 1.0f;
const float yscale_correction = (param->do_scale) ? param->scale[2] : 1.0f;
h1[0] += param->curve_in_x * xscale_correction;
h1[2] += param->curve_in_y * yscale_correction;
h2[0] += param->curve_out_x * xscale_correction;
h2[2] += param->curve_out_y * yscale_correction;
}
}
static void make_bbone_spline_matrix(BBoneSplineParameters *param,
const float scalemats[2][4][4],
const float pos[3],
const float axis[3],
float roll,
float scalex,
float scaley,
float result[4][4])
{
float mat3[3][3];
vec_roll_to_mat3(axis, roll, mat3);
copy_m4_m3(result, mat3);
copy_v3_v3(result[3], pos);
if (param->do_scale) {
/* Correct for scaling when this matrix is used in scaled space. */
mul_m4_series(result, scalemats[0], result, scalemats[1]);
}
/* BBone scale... */
mul_v3_fl(result[0], scalex);
mul_v3_fl(result[2], scaley);
}
/* Fade from first to second derivative when the handle is very short. */
static void ease_handle_axis(const float deriv1[3], const float deriv2[3], float r_axis[3])
{
const float gap = 0.1f;
copy_v3_v3(r_axis, deriv1);
float len1 = len_squared_v3(deriv1), len2 = len_squared_v3(deriv2);
float ratio = len1 / len2;
if (ratio < gap * gap) {
madd_v3_v3fl(r_axis, deriv2, gap - sqrtf(ratio));
}
}
/* Fills the array with the desired amount of bone->segments elements.
* This calculation is done within unit bone space. */
int BKE_pchan_bbone_spline_compute(BBoneSplineParameters *param,
const bool for_deform,
Mat4 *result_array)
{
float scalemats[2][4][4];
float bezt_controls[4][3];
float h1[3], roll1, h2[3], roll2, prev[3], cur[3], axis[3];
float length = param->length;
if (param->do_scale) {
size_to_mat4(scalemats[1], param->scale);
invert_m4_m4(scalemats[0], scalemats[1]);
length *= param->scale[1];
}
BKE_pchan_bbone_handles_compute(param, h1, &roll1, h2, &roll2, true, true);
/* Make curve. */
CLAMP_MAX(param->segments, MAX_BBONE_SUBDIV);
copy_v3_fl3(bezt_controls[3], 0.0f, length, 0.0f);
add_v3_v3v3(bezt_controls[2], bezt_controls[3], h2);
copy_v3_v3(bezt_controls[1], h1);
zero_v3(bezt_controls[0]);
float bezt_points[MAX_BBONE_SUBDIV + 1];
equalize_cubic_bezier(bezt_controls, MAX_BBONE_SUBDIV, param->segments, bezt_points);
/* Deformation uses N+1 matrices computed at points between the segments. */
if (for_deform) {
/* Bezier derivatives. */
float bezt_deriv1[3][3], bezt_deriv2[2][3];
for (int i = 0; i < 3; i++) {
sub_v3_v3v3(bezt_deriv1[i], bezt_controls[i + 1], bezt_controls[i]);
}
for (int i = 0; i < 2; i++) {
sub_v3_v3v3(bezt_deriv2[i], bezt_deriv1[i + 1], bezt_deriv1[i]);
}
/* End points require special handling to fix zero length handles. */
ease_handle_axis(bezt_deriv1[0], bezt_deriv2[0], axis);
make_bbone_spline_matrix(param,
scalemats,
bezt_controls[0],
axis,
roll1,
param->scale_in_x,
param->scale_in_y,
result_array[0].mat);
for (int a = 1; a < param->segments; a++) {
evaluate_cubic_bezier(bezt_controls, bezt_points[a], cur, axis);
float fac = ((float)a) / param->segments;
float roll = interpf(roll2, roll1, fac);
float scalex = interpf(param->scale_out_x, param->scale_in_x, fac);
float scaley = interpf(param->scale_out_y, param->scale_in_y, fac);
make_bbone_spline_matrix(
param, scalemats, cur, axis, roll, scalex, scaley, result_array[a].mat);
}
negate_v3(bezt_deriv2[1]);
ease_handle_axis(bezt_deriv1[2], bezt_deriv2[1], axis);
make_bbone_spline_matrix(param,
scalemats,
bezt_controls[3],
axis,
roll2,
param->scale_out_x,
param->scale_out_y,
result_array[param->segments].mat);
}
/* Other code (e.g. display) uses matrices for the segments themselves. */
else {
zero_v3(prev);
for (int a = 0; a < param->segments; a++) {
evaluate_cubic_bezier(bezt_controls, bezt_points[a + 1], cur, axis);
sub_v3_v3v3(axis, cur, prev);
float fac = (a + 0.5f) / param->segments;
float roll = interpf(roll2, roll1, fac);
float scalex = interpf(param->scale_out_x, param->scale_in_x, fac);
float scaley = interpf(param->scale_out_y, param->scale_in_y, fac);
make_bbone_spline_matrix(
param, scalemats, prev, axis, roll, scalex, scaley, result_array[a].mat);
copy_v3_v3(prev, cur);
}
}
return param->segments;
}
/* ************ Armature Deform ******************* */
static void allocate_bbone_cache(bPoseChannel *pchan, int segments)
{
bPoseChannel_Runtime *runtime = &pchan->runtime;
if (runtime->bbone_segments != segments) {
BKE_pose_channel_free_bbone_cache(runtime);
runtime->bbone_segments = segments;
runtime->bbone_rest_mats = MEM_malloc_arrayN(
sizeof(Mat4), 1 + (uint)segments, "bPoseChannel_Runtime::bbone_rest_mats");
runtime->bbone_pose_mats = MEM_malloc_arrayN(
sizeof(Mat4), 1 + (uint)segments, "bPoseChannel_Runtime::bbone_pose_mats");
runtime->bbone_deform_mats = MEM_malloc_arrayN(
sizeof(Mat4), 2 + (uint)segments, "bPoseChannel_Runtime::bbone_deform_mats");
runtime->bbone_dual_quats = MEM_malloc_arrayN(
sizeof(DualQuat), 1 + (uint)segments, "bPoseChannel_Runtime::bbone_dual_quats");
}
}
/** Compute and cache the B-Bone shape in the channel runtime struct. */
void BKE_pchan_bbone_segments_cache_compute(bPoseChannel *pchan)
{
bPoseChannel_Runtime *runtime = &pchan->runtime;
Bone *bone = pchan->bone;
int segments = bone->segments;
BLI_assert(segments > 1);
/* Allocate the cache if needed. */
allocate_bbone_cache(pchan, segments);
/* Compute the shape. */
Mat4 *b_bone = runtime->bbone_pose_mats;
Mat4 *b_bone_rest = runtime->bbone_rest_mats;
Mat4 *b_bone_mats = runtime->bbone_deform_mats;
DualQuat *b_bone_dual_quats = runtime->bbone_dual_quats;
int a;
BKE_pchan_bbone_spline_setup(pchan, false, true, b_bone);
BKE_pchan_bbone_spline_setup(pchan, true, true, b_bone_rest);
/* Compute deform matrices. */
/* first matrix is the inverse arm_mat, to bring points in local bone space
* for finding out which segment it belongs to */
invert_m4_m4(b_bone_mats[0].mat, bone->arm_mat);
/* then we make the b_bone_mats:
* - first transform to local bone space
* - translate over the curve to the bbone mat space
* - transform with b_bone matrix
* - transform back into global space */
for (a = 0; a <= bone->segments; a++) {
float tmat[4][4];
invert_m4_m4(tmat, b_bone_rest[a].mat);
mul_m4_series(b_bone_mats[a + 1].mat,
pchan->chan_mat,
bone->arm_mat,
b_bone[a].mat,
tmat,
b_bone_mats[0].mat);
mat4_to_dquat(&b_bone_dual_quats[a], bone->arm_mat, b_bone_mats[a + 1].mat);
}
}
/** Copy cached B-Bone segments from one channel to another */
void BKE_pchan_bbone_segments_cache_copy(bPoseChannel *pchan, bPoseChannel *pchan_from)
{
bPoseChannel_Runtime *runtime = &pchan->runtime;
bPoseChannel_Runtime *runtime_from = &pchan_from->runtime;
int segments = runtime_from->bbone_segments;
if (segments <= 1) {
BKE_pose_channel_free_bbone_cache(&pchan->runtime);
}
else {
allocate_bbone_cache(pchan, segments);
memcpy(runtime->bbone_rest_mats, runtime_from->bbone_rest_mats, sizeof(Mat4) * (1 + segments));
memcpy(runtime->bbone_pose_mats, runtime_from->bbone_pose_mats, sizeof(Mat4) * (1 + segments));
memcpy(runtime->bbone_deform_mats,
runtime_from->bbone_deform_mats,
sizeof(Mat4) * (2 + segments));
memcpy(runtime->bbone_dual_quats,
runtime_from->bbone_dual_quats,
sizeof(DualQuat) * (1 + segments));
}
}
/**
* Calculate index and blend factor for the two B-Bone segment nodes
* affecting the point at 0 <= pos <= 1.
*/
void BKE_pchan_bbone_deform_segment_index(const bPoseChannel *pchan,
float pos,
int *r_index,
float *r_blend_next)
{
int segments = pchan->bone->segments;
CLAMP(pos, 0.0f, 1.0f);
/* Calculate the indices of the 2 affecting b_bone segments.
* Integer part is the first segment's index.
* Integer part plus 1 is the second segment's index.
* Fractional part is the blend factor. */
float pre_blend = pos * (float)segments;
int index = (int)floorf(pre_blend);
CLAMP(index, 0, segments - 1);
float blend = pre_blend - index;
CLAMP(blend, 0.0f, 1.0f);
*r_index = index;
*r_blend_next = blend;
}
/* Add the effect of one bone or B-Bone segment to the accumulated result. */
static void pchan_deform_accumulate(const DualQuat *deform_dq,
const float deform_mat[4][4],
const float co_in[3],
float weight,
float co_accum[3],
DualQuat *dq_accum,
float mat_accum[3][3])
{
if (weight == 0.0f) {
return;
}
if (dq_accum) {
BLI_assert(!co_accum);
add_weighted_dq_dq(dq_accum, deform_dq, weight);
}
else {
float tmp[3];
mul_v3_m4v3(tmp, deform_mat, co_in);
sub_v3_v3(tmp, co_in);
madd_v3_v3fl(co_accum, tmp, weight);
if (mat_accum) {
float tmpmat[3][3];
copy_m3_m4(tmpmat, deform_mat);
madd_m3_m3m3fl(mat_accum, mat_accum, tmpmat, weight);
}
}
}
static void b_bone_deform(const bPoseChannel *pchan,
const float co[3],
float weight,
float vec[3],
DualQuat *dq,
float defmat[3][3])
{
const DualQuat *quats = pchan->runtime.bbone_dual_quats;
const Mat4 *mats = pchan->runtime.bbone_deform_mats;
const float(*mat)[4] = mats[0].mat;
float blend, y;
int index;
/* Transform co to bone space and get its y component. */
y = mat[0][1] * co[0] + mat[1][1] * co[1] + mat[2][1] * co[2] + mat[3][1];
/* Calculate the indices of the 2 affecting b_bone segments. */
BKE_pchan_bbone_deform_segment_index(pchan, y / pchan->bone->length, &index, &blend);
pchan_deform_accumulate(
&quats[index], mats[index + 1].mat, co, weight * (1.0f - blend), vec, dq, defmat);
pchan_deform_accumulate(
&quats[index + 1], mats[index + 2].mat, co, weight * blend, vec, dq, defmat);
}
/* using vec with dist to bone b1 - b2 */
float distfactor_to_bone(
const float vec[3], const float b1[3], const float b2[3], float rad1, float rad2, float rdist)
{
float dist_sq;
float bdelta[3];
float pdelta[3];
float hsqr, a, l, rad;
sub_v3_v3v3(bdelta, b2, b1);
l = normalize_v3(bdelta);
sub_v3_v3v3(pdelta, vec, b1);
a = dot_v3v3(bdelta, pdelta);
hsqr = len_squared_v3(pdelta);
if (a < 0.0f) {
/* If we're past the end of the bone, do a spherical field attenuation thing */
dist_sq = len_squared_v3v3(b1, vec);
rad = rad1;
}
else if (a > l) {
/* If we're past the end of the bone, do a spherical field attenuation thing */
dist_sq = len_squared_v3v3(b2, vec);
rad = rad2;
}
else {
dist_sq = (hsqr - (a * a));
if (l != 0.0f) {
rad = a / l;
rad = rad * rad2 + (1.0f - rad) * rad1;
}
else {
rad = rad1;
}
}
a = rad * rad;
if (dist_sq < a) {
return 1.0f;
}
else {
l = rad + rdist;
l *= l;
if (rdist == 0.0f || dist_sq >= l) {
return 0.0f;
}
else {
a = sqrtf(dist_sq) - rad;
return 1.0f - (a * a) / (rdist * rdist);
}
}
}
static float dist_bone_deform(
bPoseChannel *pchan, float vec[3], DualQuat *dq, float mat[3][3], const float co[3])
{
Bone *bone = pchan->bone;
float fac, contrib = 0.0;
if (bone == NULL) {
return 0.0f;
}
fac = distfactor_to_bone(
co, bone->arm_head, bone->arm_tail, bone->rad_head, bone->rad_tail, bone->dist);
if (fac > 0.0f) {
fac *= bone->weight;
contrib = fac;
if (contrib > 0.0f) {
if (bone->segments > 1 && pchan->runtime.bbone_segments == bone->segments) {
b_bone_deform(pchan, co, fac, vec, dq, mat);
}
else {
pchan_deform_accumulate(
&pchan->runtime.deform_dual_quat, pchan->chan_mat, co, fac, vec, dq, mat);
}
}
}
return contrib;
}
static void pchan_bone_deform(bPoseChannel *pchan,
float weight,
float vec[3],
DualQuat *dq,
float mat[3][3],
const float co[3],
float *contrib)
{
Bone *bone = pchan->bone;
if (!weight) {
return;
}
if (bone->segments > 1 && pchan->runtime.bbone_segments == bone->segments) {
b_bone_deform(pchan, co, weight, vec, dq, mat);
}
else {
pchan_deform_accumulate(
&pchan->runtime.deform_dual_quat, pchan->chan_mat, co, weight, vec, dq, mat);
}
(*contrib) += weight;
}
typedef struct ArmatureUserdata {
Object *armOb;
Object *target;
const Mesh *mesh;
float (*vertexCos)[3];
float (*defMats)[3][3];
float (*prevCos)[3];
bool use_envelope;
bool use_quaternion;
bool invert_vgroup;
bool use_dverts;
int armature_def_nr;
int target_totvert;
MDeformVert *dverts;
int defbase_tot;
bPoseChannel **defnrToPC;
float premat[4][4];
float postmat[4][4];
} ArmatureUserdata;
static void armature_vert_task(void *__restrict userdata,
const int i,
const TaskParallelTLS *__restrict UNUSED(tls))
{
const ArmatureUserdata *data = userdata;
float(*const vertexCos)[3] = data->vertexCos;
float(*const defMats)[3][3] = data->defMats;
float(*const prevCos)[3] = data->prevCos;
const bool use_envelope = data->use_envelope;
const bool use_quaternion = data->use_quaternion;
const bool use_dverts = data->use_dverts;
const int armature_def_nr = data->armature_def_nr;
MDeformVert *dvert;
DualQuat sumdq, *dq = NULL;
bPoseChannel *pchan;
float *co, dco[3];
float sumvec[3], summat[3][3];
float *vec = NULL, (*smat)[3] = NULL;
float contrib = 0.0f;
float armature_weight = 1.0f; /* default to 1 if no overall def group */
float prevco_weight = 1.0f; /* weight for optional cached vertexcos */
if (use_quaternion) {
memset(&sumdq, 0, sizeof(DualQuat));
dq = &sumdq;
}
else {
sumvec[0] = sumvec[1] = sumvec[2] = 0.0f;
vec = sumvec;
if (defMats) {
zero_m3(summat);
smat = summat;
}
}
if (use_dverts || armature_def_nr != -1) {
if (data->mesh) {
BLI_assert(i < data->mesh->totvert);
if (data->mesh->dvert != NULL) {
dvert = data->mesh->dvert + i;
}
else {
dvert = NULL;
}
}
else if (data->dverts && i < data->target_totvert) {
dvert = data->dverts + i;
}
else {
dvert = NULL;
}
}
else {
dvert = NULL;
}
if (armature_def_nr != -1 && dvert) {
armature_weight = BKE_defvert_find_weight(dvert, armature_def_nr);
if (data->invert_vgroup) {
armature_weight = 1.0f - armature_weight;
}
/* hackish: the blending factor can be used for blending with prevCos too */
if (prevCos) {
prevco_weight = armature_weight;
armature_weight = 1.0f;
}
}
/* check if there's any point in calculating for this vert */
if (armature_weight == 0.0f) {
return;
}
/* get the coord we work on */
co = prevCos ? prevCos[i] : vertexCos[i];
/* Apply the object's matrix */
mul_m4_v3(data->premat, co);
if (use_dverts && dvert && dvert->totweight) { /* use weight groups ? */
MDeformWeight *dw = dvert->dw;
int deformed = 0;
unsigned int j;
for (j = dvert->totweight; j != 0; j--, dw++) {
const uint index = dw->def_nr;
if (index < data->defbase_tot && (pchan = data->defnrToPC[index])) {
float weight = dw->weight;
Bone *bone = pchan->bone;
deformed = 1;
if (bone && bone->flag & BONE_MULT_VG_ENV) {
weight *= distfactor_to_bone(
co, bone->arm_head, bone->arm_tail, bone->rad_head, bone->rad_tail, bone->dist);
}
pchan_bone_deform(pchan, weight, vec, dq, smat, co, &contrib);
}
}
/* if there are vertexgroups but not groups with bones
* (like for softbody groups) */
if (deformed == 0 && use_envelope) {
for (pchan = data->armOb->pose->chanbase.first; pchan; pchan = pchan->next) {
if (!(pchan->bone->flag & BONE_NO_DEFORM)) {
contrib += dist_bone_deform(pchan, vec, dq, smat, co);
}
}
}
}
else if (use_envelope) {
for (pchan = data->armOb->pose->chanbase.first; pchan; pchan = pchan->next) {
if (!(pchan->bone->flag & BONE_NO_DEFORM)) {
contrib += dist_bone_deform(pchan, vec, dq, smat, co);
}
}
}
/* actually should be EPSILON? weight values and contrib can be like 10e-39 small */
if (contrib > 0.0001f) {
if (use_quaternion) {
normalize_dq(dq, contrib);
if (armature_weight != 1.0f) {
copy_v3_v3(dco, co);
mul_v3m3_dq(dco, (defMats) ? summat : NULL, dq);
sub_v3_v3(dco, co);
mul_v3_fl(dco, armature_weight);
add_v3_v3(co, dco);
}
else {
mul_v3m3_dq(co, (defMats) ? summat : NULL, dq);
}
smat = summat;
}
else {
mul_v3_fl(vec, armature_weight / contrib);
add_v3_v3v3(co, vec, co);
}
if (defMats) {
float pre[3][3], post[3][3], tmpmat[3][3];
copy_m3_m4(pre, data->premat);
copy_m3_m4(post, data->postmat);
copy_m3_m3(tmpmat, defMats[i]);
if (!use_quaternion) { /* quaternion already is scale corrected */
mul_m3_fl(smat, armature_weight / contrib);
}
mul_m3_series(defMats[i], post, smat, pre, tmpmat);
}
}
/* always, check above code */
mul_m4_v3(data->postmat, co);
/* interpolate with previous modifier position using weight group */
if (prevCos) {
float mw = 1.0f - prevco_weight;
vertexCos[i][0] = prevco_weight * vertexCos[i][0] + mw * co[0];
vertexCos[i][1] = prevco_weight * vertexCos[i][1] + mw * co[1];
vertexCos[i][2] = prevco_weight * vertexCos[i][2] + mw * co[2];
}
}
void armature_deform_verts(Object *armOb,
Object *target,
const Mesh *mesh,
float (*vertexCos)[3],
float (*defMats)[3][3],
int numVerts,
int deformflag,
float (*prevCos)[3],
const char *defgrp_name,
bGPDstroke *gps)
{
bArmature *arm = armOb->data;
bPoseChannel **defnrToPC = NULL;
MDeformVert *dverts = NULL;
bDeformGroup *dg;
const bool use_envelope = (deformflag & ARM_DEF_ENVELOPE) != 0;
const bool use_quaternion = (deformflag & ARM_DEF_QUATERNION) != 0;
const bool invert_vgroup = (deformflag & ARM_DEF_INVERT_VGROUP) != 0;
int defbase_tot = 0; /* safety for vertexgroup index overflow */
int i, target_totvert = 0; /* safety for vertexgroup overflow */
bool use_dverts = false;
int armature_def_nr;
/* in editmode, or not an armature */
if (arm->edbo || (armOb->pose == NULL)) {
return;
}
if ((armOb->pose->flag & POSE_RECALC) != 0) {
CLOG_ERROR(&LOG,
"Trying to evaluate influence of armature '%s' which needs Pose recalc!",
armOb->id.name);
BLI_assert(0);
}
/* get the def_nr for the overall armature vertex group if present */
armature_def_nr = BKE_object_defgroup_name_index(target, defgrp_name);
if (ELEM(target->type, OB_MESH, OB_LATTICE, OB_GPENCIL)) {
defbase_tot = BLI_listbase_count(&target->defbase);
if (target->type == OB_MESH) {
Mesh *me = target->data;
dverts = me->dvert;
if (dverts) {
target_totvert = me->totvert;
}
}
else if (target->type == OB_LATTICE) {
Lattice *lt = target->data;
dverts = lt->dvert;
if (dverts) {
target_totvert = lt->pntsu * lt->pntsv * lt->pntsw;
}
}
else if (target->type == OB_GPENCIL) {
dverts = gps->dvert;
if (dverts) {
target_totvert = gps->totpoints;
}
}
}
/* get a vertex-deform-index to posechannel array */
if (deformflag & ARM_DEF_VGROUP) {
if (ELEM(target->type, OB_MESH, OB_LATTICE, OB_GPENCIL)) {
/* if we have a Mesh, only use dverts if it has them */
if (mesh) {
use_dverts = (mesh->dvert != NULL);
}
else if (dverts) {
use_dverts = true;
}
if (use_dverts) {
defnrToPC = MEM_callocN(sizeof(*defnrToPC) * defbase_tot, "defnrToBone");
/* TODO(sergey): Some considerations here:
*
* - Check whether keeping this consistent across frames gives speedup.
*/
for (i = 0, dg = target->defbase.first; dg; i++, dg = dg->next) {
defnrToPC[i] = BKE_pose_channel_find_name(armOb->pose, dg->name);
/* exclude non-deforming bones */
if (defnrToPC[i]) {
if (defnrToPC[i]->bone->flag & BONE_NO_DEFORM) {
defnrToPC[i] = NULL;
}
}
}
}
}
}
ArmatureUserdata data = {.armOb = armOb,
.target = target,
.mesh = mesh,
.vertexCos = vertexCos,
.defMats = defMats,
.prevCos = prevCos,
.use_envelope = use_envelope,
.use_quaternion = use_quaternion,
.invert_vgroup = invert_vgroup,
.use_dverts = use_dverts,
.armature_def_nr = armature_def_nr,
.target_totvert = target_totvert,
.dverts = dverts,
.defbase_tot = defbase_tot,
.defnrToPC = defnrToPC};
float obinv[4][4];
invert_m4_m4(obinv, target->obmat);
mul_m4_m4m4(data.postmat, obinv, armOb->obmat);
invert_m4_m4(data.premat, data.postmat);
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.min_iter_per_thread = 32;
BLI_task_parallel_range(0, numVerts, &data, armature_vert_task, &settings);
if (defnrToPC) {
MEM_freeN(defnrToPC);
}
}
/* ************ END Armature Deform ******************* */
void get_objectspace_bone_matrix(struct Bone *bone,
float M_accumulatedMatrix[4][4],
int UNUSED(root),
int UNUSED(posed))
{
copy_m4_m4(M_accumulatedMatrix, bone->arm_mat);
}
/* **************** Space to Space API ****************** */
/* Convert World-Space Matrix to Pose-Space Matrix */
void BKE_armature_mat_world_to_pose(Object *ob, float inmat[4][4], float outmat[4][4])
{
float obmat[4][4];
/* prevent crashes */
if (ob == NULL) {
return;
}
/* get inverse of (armature) object's matrix */
invert_m4_m4(obmat, ob->obmat);
/* multiply given matrix by object's-inverse to find pose-space matrix */
mul_m4_m4m4(outmat, inmat, obmat);
}
/* Convert World-Space Location to Pose-Space Location
* NOTE: this cannot be used to convert to pose-space location of the supplied
* pose-channel into its local space (i.e. 'visual'-keyframing) */
void BKE_armature_loc_world_to_pose(Object *ob, const float inloc[3], float outloc[3])
{
float xLocMat[4][4];
float nLocMat[4][4];
/* build matrix for location */
unit_m4(xLocMat);
copy_v3_v3(xLocMat[3], inloc);
/* get bone-space cursor matrix and extract location */
BKE_armature_mat_world_to_pose(ob, xLocMat, nLocMat);
copy_v3_v3(outloc, nLocMat[3]);
}
/* Simple helper, computes the offset bone matrix.
* offs_bone = yoffs(b-1) + root(b) + bonemat(b). */
void BKE_bone_offset_matrix_get(const Bone *bone, float offs_bone[4][4])
{
BLI_assert(bone->parent != NULL);
/* Bone transform itself. */
copy_m4_m3(offs_bone, bone->bone_mat);
/* The bone's root offset (is in the parent's coordinate system). */
copy_v3_v3(offs_bone[3], bone->head);
/* Get the length translation of parent (length along y axis). */
offs_bone[3][1] += bone->parent->length;
}
/* Construct the matrices (rot/scale and loc)
* to apply the PoseChannels into the armature (object) space.
* I.e. (roughly) the "pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)" in the
* pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
* ...function.
*
* This allows to get the transformations of a bone in its object space,
* *before* constraints (and IK) get applied (used by pose evaluation code).
* And reverse: to find pchan transformations needed to place a bone at a given loc/rot/scale
* in object space (used by interactive transform, and snapping code).
*
* Note that, with the HINGE/NO_SCALE/NO_LOCAL_LOCATION options, the location matrix
* will differ from the rotation/scale matrix...
*
* NOTE: This cannot be used to convert to pose-space transforms of the supplied
* pose-channel into its local space (i.e. 'visual'-keyframing).
* (note: I don't understand that, so I keep it :p --mont29).
*/
void BKE_bone_parent_transform_calc_from_pchan(const bPoseChannel *pchan,
BoneParentTransform *r_bpt)
{
const Bone *bone, *parbone;
const bPoseChannel *parchan;
/* set up variables for quicker access below */
bone = pchan->bone;
parbone = bone->parent;
parchan = pchan->parent;
if (parchan) {
float offs_bone[4][4];
/* yoffs(b-1) + root(b) + bonemat(b). */
BKE_bone_offset_matrix_get(bone, offs_bone);
BKE_bone_parent_transform_calc_from_matrices(bone->flag,
bone->inherit_scale_mode,
offs_bone,
parbone->arm_mat,
parchan->pose_mat,
r_bpt);
}
else {
BKE_bone_parent_transform_calc_from_matrices(
bone->flag, bone->inherit_scale_mode, bone->arm_mat, NULL, NULL, r_bpt);
}
}
/* Compute the parent transform using data decoupled from specific data structures.
*
* bone_flag: Bone->flag containing settings
* offs_bone: delta from parent to current arm_mat (or just arm_mat if no parent)
* parent_arm_mat, parent_pose_mat: arm_mat and pose_mat of parent, or NULL
* r_bpt: OUTPUT parent transform */
void BKE_bone_parent_transform_calc_from_matrices(int bone_flag,
int inherit_scale_mode,
const float offs_bone[4][4],
const float parent_arm_mat[4][4],
const float parent_pose_mat[4][4],
BoneParentTransform *r_bpt)
{
copy_v3_fl(r_bpt->post_scale, 1.0f);
if (parent_pose_mat) {
const bool use_rotation = (bone_flag & BONE_HINGE) == 0;
const bool full_transform = use_rotation && inherit_scale_mode == BONE_INHERIT_SCALE_FULL;
/* Compose the rotscale matrix for this bone. */
if (full_transform) {
/* Parent pose rotation and scale. */
mul_m4_m4m4(r_bpt->rotscale_mat, parent_pose_mat, offs_bone);
}
else {
float tmat[4][4], tscale[3];
/* If using parent pose rotation: */
if (use_rotation) {
copy_m4_m4(tmat, parent_pose_mat);
/* Normalize the matrix when needed. */
switch (inherit_scale_mode) {
case BONE_INHERIT_SCALE_FULL:
case BONE_INHERIT_SCALE_FIX_SHEAR:
/* Keep scale and shear. */
break;
case BONE_INHERIT_SCALE_NONE:
case BONE_INHERIT_SCALE_AVERAGE:
/* Remove scale and shear from parent. */
orthogonalize_m4_stable(tmat, 1, true);
break;
case BONE_INHERIT_SCALE_ALIGNED:
/* Remove shear and extract scale. */
orthogonalize_m4_stable(tmat, 1, false);
normalize_m4_ex(tmat, r_bpt->post_scale);
break;
case BONE_INHERIT_SCALE_NONE_LEGACY:
/* Remove only scale - bad legacy way. */
normalize_m4(tmat);
break;
default:
BLI_assert(false);
}
}
/* If removing parent pose rotation: */
else {
copy_m4_m4(tmat, parent_arm_mat);
/* Copy the parent scale when needed. */
switch (inherit_scale_mode) {
case BONE_INHERIT_SCALE_FULL:
/* Ignore effects of shear. */
mat4_to_size(tscale, parent_pose_mat);
rescale_m4(tmat, tscale);
break;
case BONE_INHERIT_SCALE_FIX_SHEAR:
/* Take the effects of parent shear into account to get exact volume. */
mat4_to_size_fix_shear(tscale, parent_pose_mat);
rescale_m4(tmat, tscale);
break;
case BONE_INHERIT_SCALE_ALIGNED:
mat4_to_size_fix_shear(r_bpt->post_scale, parent_pose_mat);
break;
case BONE_INHERIT_SCALE_NONE:
case BONE_INHERIT_SCALE_AVERAGE:
case BONE_INHERIT_SCALE_NONE_LEGACY:
/* Keep unscaled. */
break;
default:
BLI_assert(false);
}
}
/* Apply the average parent scale when needed. */
if (inherit_scale_mode == BONE_INHERIT_SCALE_AVERAGE) {
mul_mat3_m4_fl(tmat, cbrtf(fabsf(mat4_to_volume_scale(parent_pose_mat))));
}
mul_m4_m4m4(r_bpt->rotscale_mat, tmat, offs_bone);
/* Remove remaining shear when needed, preserving volume. */
if (inherit_scale_mode == BONE_INHERIT_SCALE_FIX_SHEAR) {
orthogonalize_m4_stable(r_bpt->rotscale_mat, 1, false);
}
}
/* Compose the loc matrix for this bone. */
/* NOTE: That version does not modify bone's loc when HINGE/NO_SCALE options are set. */
/* In this case, use the object's space *orientation*. */
if (bone_flag & BONE_NO_LOCAL_LOCATION) {
/* XXX I'm sure that code can be simplified! */
float bone_loc[4][4], bone_rotscale[3][3], tmat4[4][4], tmat3[3][3];
unit_m4(bone_loc);
unit_m4(r_bpt->loc_mat);
unit_m4(tmat4);
mul_v3_m4v3(bone_loc[3], parent_pose_mat, offs_bone[3]);
unit_m3(bone_rotscale);
copy_m3_m4(tmat3, parent_pose_mat);
mul_m3_m3m3(bone_rotscale, tmat3, bone_rotscale);
copy_m4_m3(tmat4, bone_rotscale);
mul_m4_m4m4(r_bpt->loc_mat, bone_loc, tmat4);
}
/* Those flags do not affect position, use plain parent transform space! */
else if (!full_transform) {
mul_m4_m4m4(r_bpt->loc_mat, parent_pose_mat, offs_bone);
}
/* Else (i.e. default, usual case),
* just use the same matrix for rotation/scaling, and location. */
else {
copy_m4_m4(r_bpt->loc_mat, r_bpt->rotscale_mat);
}
}
/* Root bones. */
else {
/* Rotation/scaling. */
copy_m4_m4(r_bpt->rotscale_mat, offs_bone);
/* Translation. */
if (bone_flag & BONE_NO_LOCAL_LOCATION) {
/* Translation of arm_mat, without the rotation. */
unit_m4(r_bpt->loc_mat);
copy_v3_v3(r_bpt->loc_mat[3], offs_bone[3]);
}
else {
copy_m4_m4(r_bpt->loc_mat, r_bpt->rotscale_mat);
}
}
}
void BKE_bone_parent_transform_clear(struct BoneParentTransform *bpt)
{
unit_m4(bpt->rotscale_mat);
unit_m4(bpt->loc_mat);
copy_v3_fl(bpt->post_scale, 1.0f);
}
void BKE_bone_parent_transform_invert(struct BoneParentTransform *bpt)
{
invert_m4(bpt->rotscale_mat);
invert_m4(bpt->loc_mat);
invert_v3(bpt->post_scale);
}
void BKE_bone_parent_transform_combine(const struct BoneParentTransform *in1,
const struct BoneParentTransform *in2,
struct BoneParentTransform *result)
{
mul_m4_m4m4(result->rotscale_mat, in1->rotscale_mat, in2->rotscale_mat);
mul_m4_m4m4(result->loc_mat, in1->loc_mat, in2->loc_mat);
mul_v3_v3v3(result->post_scale, in1->post_scale, in2->post_scale);
}
void BKE_bone_parent_transform_apply(const struct BoneParentTransform *bpt,
const float inmat[4][4],
float outmat[4][4])
{
/* in case inmat == outmat */
float tmploc[3];
copy_v3_v3(tmploc, inmat[3]);
mul_m4_m4m4(outmat, bpt->rotscale_mat, inmat);
mul_v3_m4v3(outmat[3], bpt->loc_mat, tmploc);
rescale_m4(outmat, bpt->post_scale);
}
/* Convert Pose-Space Matrix to Bone-Space Matrix.
* NOTE: this cannot be used to convert to pose-space transforms of the supplied
* pose-channel into its local space (i.e. 'visual'-keyframing) */
void BKE_armature_mat_pose_to_bone(bPoseChannel *pchan, float inmat[4][4], float outmat[4][4])
{
BoneParentTransform bpt;
BKE_bone_parent_transform_calc_from_pchan(pchan, &bpt);
BKE_bone_parent_transform_invert(&bpt);
BKE_bone_parent_transform_apply(&bpt, inmat, outmat);
}
/* Convert Bone-Space Matrix to Pose-Space Matrix. */
void BKE_armature_mat_bone_to_pose(bPoseChannel *pchan, float inmat[4][4], float outmat[4][4])
{
BoneParentTransform bpt;
BKE_bone_parent_transform_calc_from_pchan(pchan, &bpt);
BKE_bone_parent_transform_apply(&bpt, inmat, outmat);
}
/* Convert Pose-Space Location to Bone-Space Location
* NOTE: this cannot be used to convert to pose-space location of the supplied
* pose-channel into its local space (i.e. 'visual'-keyframing) */
void BKE_armature_loc_pose_to_bone(bPoseChannel *pchan, const float inloc[3], float outloc[3])
{
float xLocMat[4][4];
float nLocMat[4][4];
/* build matrix for location */
unit_m4(xLocMat);
copy_v3_v3(xLocMat[3], inloc);
/* get bone-space cursor matrix and extract location */
BKE_armature_mat_pose_to_bone(pchan, xLocMat, nLocMat);
copy_v3_v3(outloc, nLocMat[3]);
}
void BKE_armature_mat_pose_to_bone_ex(struct Depsgraph *depsgraph,
Object *ob,
bPoseChannel *pchan,
float inmat[4][4],
float outmat[4][4])
{
bPoseChannel work_pchan = *pchan;
/* recalculate pose matrix with only parent transformations,
* bone loc/sca/rot is ignored, scene and frame are not used. */
BKE_pose_where_is_bone(depsgraph, NULL, ob, &work_pchan, 0.0f, false);
/* find the matrix, need to remove the bone transforms first so this is
* calculated as a matrix to set rather then a difference ontop of what's
* already there. */
unit_m4(outmat);
BKE_pchan_apply_mat4(&work_pchan, outmat, false);
BKE_armature_mat_pose_to_bone(&work_pchan, inmat, outmat);
}
/**
* Same as #BKE_object_mat3_to_rot().
*/
void BKE_pchan_mat3_to_rot(bPoseChannel *pchan, float mat[3][3], bool use_compat)
{
BLI_ASSERT_UNIT_M3(mat);
switch (pchan->rotmode) {
case ROT_MODE_QUAT:
mat3_normalized_to_quat(pchan->quat, mat);
break;
case ROT_MODE_AXISANGLE:
mat3_normalized_to_axis_angle(pchan->rotAxis, &pchan->rotAngle, mat);
break;
default: /* euler */
if (use_compat) {
mat3_normalized_to_compatible_eulO(pchan->eul, pchan->eul, pchan->rotmode, mat);
}
else {
mat3_normalized_to_eulO(pchan->eul, pchan->rotmode, mat);
}
break;
}
}
/**
* Same as #BKE_object_rot_to_mat3().
*/
void BKE_pchan_rot_to_mat3(const bPoseChannel *pchan, float mat[3][3])
{
/* rotations may either be quats, eulers (with various rotation orders), or axis-angle */
if (pchan->rotmode > 0) {
/* euler rotations (will cause gimble lock,
* but this can be alleviated a bit with rotation orders) */
eulO_to_mat3(mat, pchan->eul, pchan->rotmode);
}
else if (pchan->rotmode == ROT_MODE_AXISANGLE) {
/* axis-angle - not really that great for 3D-changing orientations */
axis_angle_to_mat3(mat, pchan->rotAxis, pchan->rotAngle);
}
else {
/* quats are normalized before use to eliminate scaling issues */
float quat[4];
/* NOTE: we now don't normalize the stored values anymore,
* since this was kindof evil in some cases but if this proves to be too problematic,
* switch back to the old system of operating directly on the stored copy. */
normalize_qt_qt(quat, pchan->quat);
quat_to_mat3(mat, quat);
}
}
/**
* Apply a 4x4 matrix to the pose bone,
* similar to #BKE_object_apply_mat4().
*/
void BKE_pchan_apply_mat4(bPoseChannel *pchan, float mat[4][4], bool use_compat)
{
float rot[3][3];
mat4_to_loc_rot_size(pchan->loc, rot, pchan->size, mat);
BKE_pchan_mat3_to_rot(pchan, rot, use_compat);
}
/**
* Remove rest-position effects from pose-transform for obtaining
* 'visual' transformation of pose-channel.
* (used by the Visual-Keyframing stuff).
*/
void BKE_armature_mat_pose_to_delta(float delta_mat[4][4],
float pose_mat[4][4],
float arm_mat[4][4])
{
float imat[4][4];
invert_m4_m4(imat, arm_mat);
mul_m4_m4m4(delta_mat, imat, pose_mat);
}
/* **************** Rotation Mode Conversions ****************************** */
/* Used for Objects and Pose Channels, since both can have multiple rotation representations */
/* Called from RNA when rotation mode changes
* - the result should be that the rotations given in the provided pointers have had conversions
* applied (as appropriate), such that the rotation of the element hasn't 'visually' changed */
void BKE_rotMode_change_values(
float quat[4], float eul[3], float axis[3], float *angle, short oldMode, short newMode)
{
/* check if any change - if so, need to convert data */
if (newMode > 0) { /* to euler */
if (oldMode == ROT_MODE_AXISANGLE) {
/* axis-angle to euler */
axis_angle_to_eulO(eul, newMode, axis, *angle);
}
else if (oldMode == ROT_MODE_QUAT) {
/* quat to euler */
normalize_qt(quat);
quat_to_eulO(eul, newMode, quat);
}
/* else { no conversion needed } */
}
else if (newMode == ROT_MODE_QUAT) { /* to quat */
if (oldMode == ROT_MODE_AXISANGLE) {
/* axis angle to quat */
axis_angle_to_quat(quat, axis, *angle);
}
else if (oldMode > 0) {
/* euler to quat */
eulO_to_quat(quat, eul, oldMode);
}
/* else { no conversion needed } */
}
else if (newMode == ROT_MODE_AXISANGLE) { /* to axis-angle */
if (oldMode > 0) {
/* euler to axis angle */
eulO_to_axis_angle(axis, angle, eul, oldMode);
}
else if (oldMode == ROT_MODE_QUAT) {
/* quat to axis angle */
normalize_qt(quat);
quat_to_axis_angle(axis, angle, quat);
}
/* When converting to axis-angle,
* we need a special exception for the case when there is no axis. */
if (IS_EQF(axis[0], axis[1]) && IS_EQF(axis[1], axis[2])) {
/* for now, rotate around y-axis then (so that it simply becomes the roll) */
axis[1] = 1.0f;
}
}
}
/* **************** The new & simple (but OK!) armature evaluation ********* */
/* ****************** And how it works! ****************************************
*
* This is the bone transformation trick; they're hierarchical so each bone(b)
* is in the coord system of bone(b-1):
*
* arm_mat(b)= arm_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)
*
* -> yoffs is just the y axis translation in parent's coord system
* -> d_root is the translation of the bone root, also in parent's coord system
*
* pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
*
* we then - in init deform - store the deform in chan_mat, such that:
*
* pose_mat(b)= arm_mat(b) * chan_mat(b)
*
* *************************************************************************** */
/* Computes vector and roll based on a rotation.
* "mat" must contain only a rotation, and no scaling. */
void mat3_to_vec_roll(const float mat[3][3], float r_vec[3], float *r_roll)
{
if (r_vec) {
copy_v3_v3(r_vec, mat[1]);
}
if (r_roll) {
mat3_vec_to_roll(mat, mat[1], r_roll);
}
}
/* Computes roll around the vector that best approximates the matrix.
* If vec is the Y vector from purely rotational mat, result should be exact. */
void mat3_vec_to_roll(const float mat[3][3], const float vec[3], float *r_roll)
{
float vecmat[3][3], vecmatinv[3][3], rollmat[3][3], q[4];
/* Compute the orientation relative to the vector with zero roll. */
vec_roll_to_mat3(vec, 0.0f, vecmat);
invert_m3_m3(vecmatinv, vecmat);
mul_m3_m3m3(rollmat, vecmatinv, mat);
/* Extract the twist angle as the roll value. */
mat3_to_quat(q, rollmat);
*r_roll = quat_split_swing_and_twist(q, 1, NULL, NULL);
}
/* Calculates the rest matrix of a bone based on its vector and a roll around that vector. */
/**
* Given `v = (v.x, v.y, v.z)` our (normalized) bone vector, we want the rotation matrix M
* from the Y axis (so that `M * (0, 1, 0) = v`).
* - The rotation axis a lays on XZ plane, and it is orthonormal to v,
* hence to the projection of v onto XZ plane.
* - `a = (v.z, 0, -v.x)`
*
* We know a is eigenvector of M (so M * a = a).
* Finally, we have w, such that M * w = (0, 1, 0)
* (i.e. the vector that will be aligned with Y axis once transformed).
* We know w is symmetric to v by the Y axis.
* - `w = (-v.x, v.y, -v.z)`
*
* Solving this, we get (x, y and z being the components of v):
* <pre>
* ┌ (x^2 * y + z^2) / (x^2 + z^2), x, x * z * (y - 1) / (x^2 + z^2) ┐
* M = │ x * (y^2 - 1) / (x^2 + z^2), y, z * (y^2 - 1) / (x^2 + z^2) │
* └ x * z * (y - 1) / (x^2 + z^2), z, (x^2 + z^2 * y) / (x^2 + z^2) ┘
* </pre>
*
* This is stable as long as v (the bone) is not too much aligned with +/-Y
* (i.e. x and z components are not too close to 0).
*
* Since v is normalized, we have `x^2 + y^2 + z^2 = 1`,
* hence `x^2 + z^2 = 1 - y^2 = (1 - y)(1 + y)`.
*
* This allows to simplifies M like this:
* <pre>
* ┌ 1 - x^2 / (1 + y), x, -x * z / (1 + y) ┐
* M = │ -x, y, -z │
* └ -x * z / (1 + y), z, 1 - z^2 / (1 + y) ┘
* </pre>
*
* Written this way, we see the case v = +Y is no more a singularity.
* The only one
* remaining is the bone being aligned with -Y.
*
* Let's handle
* the asymptotic behavior when bone vector is reaching the limit of y = -1.
* Each of the four corner elements can vary from -1 to 1,
* depending on the axis a chosen for doing the rotation.
* And the "rotation" here is in fact established by mirroring XZ plane by that given axis,
* then inversing the Y-axis.
* For sufficiently small x and z, and with y approaching -1,
* all elements but the four corner ones of M will degenerate.
* So let's now focus on these corner elements.
*
* We rewrite M so that it only contains its four corner elements,
* and combine the `1 / (1 + y)` factor:
* <pre>
* ┌ 1 + y - x^2, -x * z ┐
* M* = 1 / (1 + y) * │ │
* └ -x * z, 1 + y - z^2 ┘
* </pre>
*
* When y is close to -1, computing 1 / (1 + y) will cause severe numerical instability,
* so we ignore it and normalize M instead.
* We know `y^2 = 1 - (x^2 + z^2)`, and `y < 0`, hence `y = -sqrt(1 - (x^2 + z^2))`.
*
* Since x and z are both close to 0, we apply the binomial expansion to the first order:
* `y = -sqrt(1 - (x^2 + z^2)) = -1 + (x^2 + z^2) / 2`. Which gives:
* <pre>
* ┌ z^2 - x^2, -2 * x * z ┐
* M* = 1 / (x^2 + z^2) * │ │
* └ -2 * x * z, x^2 - z^2 ┘
* </pre>
*/
void vec_roll_to_mat3_normalized(const float nor[3], const float roll, float mat[3][3])
{
#define THETA_THRESHOLD_NEGY 1.0e-9f
#define THETA_THRESHOLD_NEGY_CLOSE 1.0e-5f
float theta;
float rMatrix[3][3], bMatrix[3][3];
BLI_ASSERT_UNIT_V3(nor);
theta = 1.0f + nor[1];
/* With old algo, 1.0e-13f caused T23954 and T31333, 1.0e-6f caused T27675 and T30438,
* so using 1.0e-9f as best compromise.
*
* New algo is supposed much more precise, since less complex computations are performed,
* but it uses two different threshold values...
*
* Note: When theta is close to zero, we have to check we do have non-null X/Z components as well
* (due to float precision errors, we can have nor = (0.0, 0.99999994, 0.0)...).
*/
if (theta > THETA_THRESHOLD_NEGY_CLOSE || ((nor[0] || nor[2]) && theta > THETA_THRESHOLD_NEGY)) {
/* nor is *not* -Y.
* We got these values for free... so be happy with it... ;)
*/
bMatrix[0][1] = -nor[0];
bMatrix[1][0] = nor[0];
bMatrix[1][1] = nor[1];
bMatrix[1][2] = nor[2];
bMatrix[2][1] = -nor[2];
if (theta > THETA_THRESHOLD_NEGY_CLOSE) {
/* If nor is far enough from -Y, apply the general case. */
bMatrix[0][0] = 1 - nor[0] * nor[0] / theta;
bMatrix[2][2] = 1 - nor[2] * nor[2] / theta;
bMatrix[2][0] = bMatrix[0][2] = -nor[0] * nor[2] / theta;
}
else {
/* If nor is too close to -Y, apply the special case. */
theta = nor[0] * nor[0] + nor[2] * nor[2];
bMatrix[0][0] = (nor[0] + nor[2]) * (nor[0] - nor[2]) / -theta;
bMatrix[2][2] = -bMatrix[0][0];
bMatrix[2][0] = bMatrix[0][2] = 2.0f * nor[0] * nor[2] / theta;
}
}
else {
/* If nor is -Y, simple symmetry by Z axis. */
unit_m3(bMatrix);
bMatrix[0][0] = bMatrix[1][1] = -1.0;
}
/* Make Roll matrix */
axis_angle_normalized_to_mat3(rMatrix, nor, roll);
/* Combine and output result */
mul_m3_m3m3(mat, rMatrix, bMatrix);
#undef THETA_THRESHOLD_NEGY
#undef THETA_THRESHOLD_NEGY_CLOSE
}
void vec_roll_to_mat3(const float vec[3], const float roll, float mat[3][3])
{
float nor[3];
normalize_v3_v3(nor, vec);
vec_roll_to_mat3_normalized(nor, roll, mat);
}
/**
* Recursive part, calculates rest-position of entire tree of children.
* \note Used when exiting edit-mode too.
*/
void BKE_armature_where_is_bone(Bone *bone, const Bone *bone_parent, const bool use_recursion)
{
float vec[3];
/* Bone Space */
sub_v3_v3v3(vec, bone->tail, bone->head);
bone->length = len_v3(vec);
vec_roll_to_mat3(vec, bone->roll, bone->bone_mat);
/* this is called on old file reading too... */
if (bone->xwidth == 0.0f) {
bone->xwidth = 0.1f;
bone->zwidth = 0.1f;
bone->segments = 1;
}
if (bone_parent) {
float offs_bone[4][4];
/* yoffs(b-1) + root(b) + bonemat(b) */
BKE_bone_offset_matrix_get(bone, offs_bone);
/* Compose the matrix for this bone */
mul_m4_m4m4(bone->arm_mat, bone_parent->arm_mat, offs_bone);
}
else {
copy_m4_m3(bone->arm_mat, bone->bone_mat);
copy_v3_v3(bone->arm_mat[3], bone->head);
}
/* and the kiddies */
if (use_recursion) {
bone_parent = bone;
for (bone = bone->childbase.first; bone; bone = bone->next) {
BKE_armature_where_is_bone(bone, bone_parent, use_recursion);
}
}
}
/* updates vectors and matrices on rest-position level, only needed
* after editing armature itself, now only on reading file */
void BKE_armature_where_is(bArmature *arm)
{
Bone *bone;
/* hierarchical from root to children */
for (bone = arm->bonebase.first; bone; bone = bone->next) {
BKE_armature_where_is_bone(bone, NULL, true);
}
}
/* if bone layer is protected, copy the data from from->pose
* when used with linked libraries this copies from the linked pose into the local pose */
static void pose_proxy_sync(Object *ob, Object *from, int layer_protected)
{
bPose *pose = ob->pose, *frompose = from->pose;
bPoseChannel *pchan, *pchanp;
bConstraint *con;
int error = 0;
if (frompose == NULL) {
return;
}
/* in some cases when rigs change, we cant synchronize
* to avoid crashing check for possible errors here */
for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
if (pchan->bone->layer & layer_protected) {
if (BKE_pose_channel_find_name(frompose, pchan->name) == NULL) {
CLOG_ERROR(&LOG,
"failed to sync proxy armature because '%s' is missing pose channel '%s'",
from->id.name,
pchan->name);
error = 1;
}
}
}
if (error) {
return;
}
/* clear all transformation values from library */
BKE_pose_rest(frompose);
/* copy over all of the proxy's bone groups */
/* TODO for later
* - implement 'local' bone groups as for constraints
* Note: this isn't trivial, as bones reference groups by index not by pointer,
* so syncing things correctly needs careful attention */
BLI_freelistN(&pose->agroups);
BLI_duplicatelist(&pose->agroups, &frompose->agroups);
pose->active_group = frompose->active_group;
for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
pchanp = BKE_pose_channel_find_name(frompose, pchan->name);
if (UNLIKELY(pchanp == NULL)) {
/* happens for proxies that become invalid because of a missing link
* for regular cases it shouldn't happen at all */
}
else if (pchan->bone->layer & layer_protected) {
ListBase proxylocal_constraints = {NULL, NULL};
bPoseChannel pchanw;
/* copy posechannel to temp, but restore important pointers */
pchanw = *pchanp;
pchanw.bone = pchan->bone;
pchanw.prev = pchan->prev;
pchanw.next = pchan->next;
pchanw.parent = pchan->parent;
pchanw.child = pchan->child;
pchanw.custom_tx = pchan->custom_tx;
pchanw.bbone_prev = pchan->bbone_prev;
pchanw.bbone_next = pchan->bbone_next;
pchanw.mpath = pchan->mpath;
pchan->mpath = NULL;
/* Reset runtime data, we don't want to share that with the proxy. */
BKE_pose_channel_runtime_reset(&pchanw.runtime);
/* this is freed so copy a copy, else undo crashes */
if (pchanw.prop) {
pchanw.prop = IDP_CopyProperty(pchanw.prop);
/* use the values from the existing props */
if (pchan->prop) {
IDP_SyncGroupValues(pchanw.prop, pchan->prop);
}
}
/* Constraints - proxy constraints are flushed... local ones are added after
* 1: extract constraints not from proxy (CONSTRAINT_PROXY_LOCAL) from pchan's constraints.
* 2: copy proxy-pchan's constraints on-to new.
* 3: add extracted local constraints back on top.
*
* Note for BKE_constraints_copy:
* When copying constraints, disable 'do_extern' otherwise
* we get the libs direct linked in this blend.
*/
BKE_constraints_proxylocal_extract(&proxylocal_constraints, &pchan->constraints);
BKE_constraints_copy(&pchanw.constraints, &pchanp->constraints, false);
BLI_movelisttolist(&pchanw.constraints, &proxylocal_constraints);
/* constraints - set target ob pointer to own object */
for (con = pchanw.constraints.first; con; con = con->next) {
const bConstraintTypeInfo *cti = BKE_constraint_typeinfo_get(con);
ListBase targets = {NULL, NULL};
bConstraintTarget *ct;
if (cti && cti->get_constraint_targets) {
cti->get_constraint_targets(con, &targets);
for (ct = targets.first; ct; ct = ct->next) {
if (ct->tar == from) {
ct->tar = ob;
}
}
if (cti->flush_constraint_targets) {
cti->flush_constraint_targets(con, &targets, 0);
}
}
}
/* free stuff from current channel */
BKE_pose_channel_free(pchan);
/* copy data in temp back over to the cleaned-out (but still allocated) original channel */
*pchan = pchanw;
if (pchan->custom) {
id_us_plus(&pchan->custom->id);
}
}
else {
/* always copy custom shape */
pchan->custom = pchanp->custom;
if (pchan->custom) {
id_us_plus(&pchan->custom->id);
}
if (pchanp->custom_tx) {
pchan->custom_tx = BKE_pose_channel_find_name(pose, pchanp->custom_tx->name);
}
/* ID-Property Syncing */
{
IDProperty *prop_orig = pchan->prop;
if (pchanp->prop) {
pchan->prop = IDP_CopyProperty(pchanp->prop);
if (prop_orig) {
/* copy existing values across when types match */
IDP_SyncGroupValues(pchan->prop, prop_orig);
}
}
else {
pchan->prop = NULL;
}
if (prop_orig) {
IDP_FreeProperty(prop_orig);
}
}
}
}
}
static int rebuild_pose_bone(bPose *pose, Bone *bone, bPoseChannel *parchan, int counter)
{
bPoseChannel *pchan = BKE_pose_channel_verify(pose, bone->name); /* verify checks and/or adds */
pchan->bone = bone;
pchan->parent = parchan;
counter++;
for (bone = bone->childbase.first; bone; bone = bone->next) {
counter = rebuild_pose_bone(pose, bone, pchan, counter);
/* for quick detecting of next bone in chain, only b-bone uses it now */
if (bone->flag & BONE_CONNECTED) {
pchan->child = BKE_pose_channel_find_name(pose, bone->name);
}
}
return counter;
}
/**
* Clear pointers of object's pose
* (needed in remap case, since we cannot always wait for a complete pose rebuild).
*/
void BKE_pose_clear_pointers(bPose *pose)
{
LISTBASE_FOREACH (bPoseChannel *, pchan, &pose->chanbase) {
pchan->bone = NULL;
pchan->child = NULL;
}
}
void BKE_pose_remap_bone_pointers(bArmature *armature, bPose *pose)
{
LISTBASE_FOREACH (bPoseChannel *, pchan, &pose->chanbase) {
pchan->bone = BKE_armature_find_bone_name(armature, pchan->name);
}
}
/** Find the matching pose channel using the bone name, if not NULL. */
static bPoseChannel *pose_channel_find_bone(bPose *pose, Bone *bone)
{
return (bone != NULL) ? BKE_pose_channel_find_name(pose, bone->name) : NULL;
}
/** Update the links for the B-Bone handles from Bone data. */
void BKE_pchan_rebuild_bbone_handles(bPose *pose, bPoseChannel *pchan)
{
pchan->bbone_prev = pose_channel_find_bone(pose, pchan->bone->bbone_prev);
pchan->bbone_next = pose_channel_find_bone(pose, pchan->bone->bbone_next);
}
/**
* Only after leave editmode, duplicating, validating older files, library syncing.
*
* \note pose->flag is set for it.
*
* \param bmain: May be NULL, only used to tag depsgraph as being dirty...
*/
void BKE_pose_rebuild(Main *bmain, Object *ob, bArmature *arm, const bool do_id_user)
{
Bone *bone;
bPose *pose;
bPoseChannel *pchan, *next;
int counter = 0;
/* only done here */
if (ob->pose == NULL) {
/* create new pose */
ob->pose = MEM_callocN(sizeof(bPose), "new pose");
/* set default settings for animviz */
animviz_settings_init(&ob->pose->avs);
}
pose = ob->pose;
/* clear */
BKE_pose_clear_pointers(pose);
/* first step, check if all channels are there */
for (bone = arm->bonebase.first; bone; bone = bone->next) {
counter = rebuild_pose_bone(pose, bone, NULL, counter);
}
/* and a check for garbage */
for (pchan = pose->chanbase.first; pchan; pchan = next) {
next = pchan->next;
if (pchan->bone == NULL) {
BKE_pose_channel_free_ex(pchan, do_id_user);
BKE_pose_channels_hash_free(pose);
BLI_freelinkN(&pose->chanbase, pchan);
}
}
BKE_pose_channels_hash_make(pose);
for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
/* Find the custom B-Bone handles. */
BKE_pchan_rebuild_bbone_handles(pose, pchan);
}
/* printf("rebuild pose %s, %d bones\n", ob->id.name, counter); */
/* synchronize protected layers with proxy */
/* HACK! To preserve 2.7x behavior that you always can pose even locked bones,
* do not do any restoration if this is a COW temp copy! */
/* Switched back to just NO_MAIN tag, for some reasons (c)
* using COW tag was working this morning, but not anymore... */
if (ob->proxy != NULL && (ob->id.tag & LIB_TAG_NO_MAIN) == 0) {
BKE_object_copy_proxy_drivers(ob, ob->proxy);
pose_proxy_sync(ob, ob->proxy, arm->layer_protected);
}
BKE_pose_update_constraint_flags(pose); /* for IK detection for example */
pose->flag &= ~POSE_RECALC;
pose->flag |= POSE_WAS_REBUILT;
/* Rebuilding poses forces us to also rebuild the dependency graph,
* since there is one node per pose/bone. */
if (bmain != NULL) {
DEG_relations_tag_update(bmain);
}
}
/* ********************** THE POSE SOLVER ******************* */
/* loc/rot/size to given mat4 */
void BKE_pchan_to_mat4(const bPoseChannel *pchan, float chan_mat[4][4])
{
float smat[3][3];
float rmat[3][3];
float tmat[3][3];
/* get scaling matrix */
size_to_mat3(smat, pchan->size);
/* get rotation matrix */
BKE_pchan_rot_to_mat3(pchan, rmat);
/* calculate matrix of bone (as 3x3 matrix, but then copy the 4x4) */
mul_m3_m3m3(tmat, rmat, smat);
copy_m4_m3(chan_mat, tmat);
/* prevent action channels breaking chains */
/* need to check for bone here, CONSTRAINT_TYPE_ACTION uses this call */
if ((pchan->bone == NULL) || !(pchan->bone->flag & BONE_CONNECTED)) {
copy_v3_v3(chan_mat[3], pchan->loc);
}
}
/* loc/rot/size to mat4 */
/* used in constraint.c too */
void BKE_pchan_calc_mat(bPoseChannel *pchan)
{
/* this is just a wrapper around the copy of this function which calculates the matrix
* and stores the result in any given channel
*/
BKE_pchan_to_mat4(pchan, pchan->chan_mat);
}
/* calculate tail of posechannel */
void BKE_pose_where_is_bone_tail(bPoseChannel *pchan)
{
float vec[3];
copy_v3_v3(vec, pchan->pose_mat[1]);
mul_v3_fl(vec, pchan->bone->length);
add_v3_v3v3(pchan->pose_tail, pchan->pose_head, vec);
}
/* The main armature solver, does all constraints excluding IK */
/* pchan is validated, as having bone and parent pointer
* 'do_extra': when zero skips loc/size/rot, constraints and strip modifiers.
*/
void BKE_pose_where_is_bone(struct Depsgraph *depsgraph,
Scene *scene,
Object *ob,
bPoseChannel *pchan,
float ctime,
bool do_extra)
{
/* This gives a chan_mat with actions (ipos) results. */
if (do_extra) {
BKE_pchan_calc_mat(pchan);
}
else {
unit_m4(pchan->chan_mat);
}
/* Construct the posemat based on PoseChannels, that we do before applying constraints. */
/* pose_mat(b) = pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) */
BKE_armature_mat_bone_to_pose(pchan, pchan->chan_mat, pchan->pose_mat);
/* Only rootbones get the cyclic offset (unless user doesn't want that). */
/* XXX That could be a problem for snapping and other "reverse transform" features... */
if (!pchan->parent) {
if ((pchan->bone->flag & BONE_NO_CYCLICOFFSET) == 0) {
add_v3_v3(pchan->pose_mat[3], ob->pose->cyclic_offset);
}
}
if (do_extra) {
/* Do constraints */
if (pchan->constraints.first) {
bConstraintOb *cob;
float vec[3];
/* make a copy of location of PoseChannel for later */
copy_v3_v3(vec, pchan->pose_mat[3]);
/* prepare PoseChannel for Constraint solving
* - makes a copy of matrix, and creates temporary struct to use
*/
cob = BKE_constraints_make_evalob(depsgraph, scene, ob, pchan, CONSTRAINT_OBTYPE_BONE);
/* Solve PoseChannel's Constraints */
/* ctime doesn't alter objects. */
BKE_constraints_solve(depsgraph, &pchan->constraints, cob, ctime);
/* cleanup after Constraint Solving
* - applies matrix back to pchan, and frees temporary struct used
*/
BKE_constraints_clear_evalob(cob);
/* prevent constraints breaking a chain */
if (pchan->bone->flag & BONE_CONNECTED) {
copy_v3_v3(pchan->pose_mat[3], vec);
}
}
}
/* calculate head */
copy_v3_v3(pchan->pose_head, pchan->pose_mat[3]);
/* calculate tail */
BKE_pose_where_is_bone_tail(pchan);
}
/* This only reads anim data from channels, and writes to channels */
/* This is the only function adding poses */
void BKE_pose_where_is(struct Depsgraph *depsgraph, Scene *scene, Object *ob)
{
bArmature *arm;
Bone *bone;
bPoseChannel *pchan;
float imat[4][4];
float ctime;
if (ob->type != OB_ARMATURE) {
return;
}
arm = ob->data;
if (ELEM(NULL, arm, scene)) {
return;
}
if ((ob->pose == NULL) || (ob->pose->flag & POSE_RECALC)) {
/* WARNING! passing NULL bmain here means we won't tag depsgraph's as dirty -
* hopefully this is OK. */
BKE_pose_rebuild(NULL, ob, arm, true);
}
ctime = BKE_scene_frame_get(scene); /* not accurate... */
/* In edit-mode or rest-position we read the data from the bones. */
if (arm->edbo || (arm->flag & ARM_RESTPOS)) {
for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
bone = pchan->bone;
if (bone) {
copy_m4_m4(pchan->pose_mat, bone->arm_mat);
copy_v3_v3(pchan->pose_head, bone->arm_head);
copy_v3_v3(pchan->pose_tail, bone->arm_tail);
}
}
}
else {
invert_m4_m4(ob->imat, ob->obmat); /* imat is needed */
/* 1. clear flags */
for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
pchan->flag &= ~(POSE_DONE | POSE_CHAIN | POSE_IKTREE | POSE_IKSPLINE);
}
/* 2a. construct the IK tree (standard IK) */
BIK_initialize_tree(depsgraph, scene, ob, ctime);
/* 2b. construct the Spline IK trees
* - this is not integrated as an IK plugin, since it should be able
* to function in conjunction with standard IK
*/
BKE_pose_splineik_init_tree(scene, ob, ctime);
/* 3. the main loop, channels are already hierarchical sorted from root to children */
for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
/* 4a. if we find an IK root, we handle it separated */
if (pchan->flag & POSE_IKTREE) {
BIK_execute_tree(depsgraph, scene, ob, pchan, ctime);
}
/* 4b. if we find a Spline IK root, we handle it separated too */
else if (pchan->flag & POSE_IKSPLINE) {
BKE_splineik_execute_tree(depsgraph, scene, ob, pchan, ctime);
}
/* 5. otherwise just call the normal solver */
else if (!(pchan->flag & POSE_DONE)) {
BKE_pose_where_is_bone(depsgraph, scene, ob, pchan, ctime, 1);
}
}
/* 6. release the IK tree */
BIK_release_tree(scene, ob, ctime);
}
/* calculating deform matrices */
for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
if (pchan->bone) {
invert_m4_m4(imat, pchan->bone->arm_mat);
mul_m4_m4m4(pchan->chan_mat, pchan->pose_mat, imat);
}
}
}
/************** Bounding box ********************/
static int minmax_armature(Object *ob, float r_min[3], float r_max[3])
{
bPoseChannel *pchan;
/* For now, we assume BKE_pose_where_is has already been called
* (hence we have valid data in pachan). */
for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
minmax_v3v3_v3(r_min, r_max, pchan->pose_head);
minmax_v3v3_v3(r_min, r_max, pchan->pose_tail);
}
return (BLI_listbase_is_empty(&ob->pose->chanbase) == false);
}
static void boundbox_armature(Object *ob)
{
BoundBox *bb;
float min[3], max[3];
if (ob->runtime.bb == NULL) {
ob->runtime.bb = MEM_callocN(sizeof(BoundBox), "Armature boundbox");
}
bb = ob->runtime.bb;
INIT_MINMAX(min, max);
if (!minmax_armature(ob, min, max)) {
min[0] = min[1] = min[2] = -1.0f;
max[0] = max[1] = max[2] = 1.0f;
}
BKE_boundbox_init_from_minmax(bb, min, max);
bb->flag &= ~BOUNDBOX_DIRTY;
}
BoundBox *BKE_armature_boundbox_get(Object *ob)
{
boundbox_armature(ob);
return ob->runtime.bb;
}
bool BKE_pose_minmax(Object *ob, float r_min[3], float r_max[3], bool use_hidden, bool use_select)
{
bool changed = false;
if (ob->pose) {
bArmature *arm = ob->data;
bPoseChannel *pchan;
for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
/* XXX pchan->bone may be NULL for duplicated bones, see duplicateEditBoneObjects() comment
* (editarmature.c:2592)... Skip in this case too! */
if (pchan->bone && (!((use_hidden == false) && (PBONE_VISIBLE(arm, pchan->bone) == false)) &&
!((use_select == true) && ((pchan->bone->flag & BONE_SELECTED) == 0)))) {
bPoseChannel *pchan_tx = (pchan->custom && pchan->custom_tx) ? pchan->custom_tx : pchan;
BoundBox *bb_custom = ((pchan->custom) && !(arm->flag & ARM_NO_CUSTOM)) ?
BKE_object_boundbox_get(pchan->custom) :
NULL;
if (bb_custom) {
float mat[4][4], smat[4][4];
scale_m4_fl(smat, PCHAN_CUSTOM_DRAW_SIZE(pchan));
mul_m4_series(mat, ob->obmat, pchan_tx->pose_mat, smat);
BKE_boundbox_minmax(bb_custom, mat, r_min, r_max);
}
else {
float vec[3];
mul_v3_m4v3(vec, ob->obmat, pchan_tx->pose_head);
minmax_v3v3_v3(r_min, r_max, vec);
mul_v3_m4v3(vec, ob->obmat, pchan_tx->pose_tail);
minmax_v3v3_v3(r_min, r_max, vec);
}
changed = true;
}
}
}
return changed;
}
/************** Graph evaluation ********************/
bPoseChannel *BKE_armature_ik_solver_find_root(bPoseChannel *pchan, bKinematicConstraint *data)
{
bPoseChannel *rootchan = pchan;
if (!(data->flag & CONSTRAINT_IK_TIP)) {
/* Exclude tip from chain. */
rootchan = rootchan->parent;
}
if (rootchan != NULL) {
int segcount = 0;
while (rootchan->parent) {
/* Continue up chain, until we reach target number of items. */
segcount++;
if (segcount == data->rootbone) {
break;
}
rootchan = rootchan->parent;
}
}
return rootchan;
}
bPoseChannel *BKE_armature_splineik_solver_find_root(bPoseChannel *pchan,
bSplineIKConstraint *data)
{
bPoseChannel *rootchan = pchan;
int segcount = 0;
BLI_assert(rootchan != NULL);
while (rootchan->parent) {
/* Continue up chain, until we reach target number of items. */
segcount++;
if (segcount == data->chainlen) {
break;
}
rootchan = rootchan->parent;
}
return rootchan;
}