tornavis/source/blender/blenkernel/intern/material.c

1769 lines
44 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup bke
*/
#include <math.h>
#include <stddef.h>
#include <string.h>
#include "CLG_log.h"
#include "MEM_guardedalloc.h"
#include "DNA_ID.h"
#include "DNA_anim_types.h"
#include "DNA_collection_types.h"
#include "DNA_curve_types.h"
#include "DNA_customdata_types.h"
#include "DNA_defaults.h"
#include "DNA_gpencil_types.h"
#include "DNA_hair_types.h"
#include "DNA_material_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_meta_types.h"
#include "DNA_node_types.h"
#include "DNA_object_types.h"
#include "DNA_pointcloud_types.h"
#include "DNA_scene_types.h"
#include "DNA_volume_types.h"
#include "BLI_array_utils.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BLT_translation.h"
#include "BKE_brush.h"
#include "BKE_curve.h"
#include "BKE_displist.h"
#include "BKE_editmesh.h"
#include "BKE_font.h"
#include "BKE_gpencil.h"
#include "BKE_icons.h"
#include "BKE_idtype.h"
#include "BKE_image.h"
#include "BKE_lib_id.h"
#include "BKE_lib_query.h"
#include "BKE_main.h"
#include "BKE_material.h"
#include "BKE_mesh.h"
#include "BKE_node.h"
#include "BKE_scene.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_build.h"
#include "GPU_material.h"
#include "NOD_shader.h"
static CLG_LogRef LOG = {"bke.material"};
static void material_init_data(ID *id)
{
Material *material = (Material *)id;
BLI_assert(MEMCMP_STRUCT_AFTER_IS_ZERO(material, id));
MEMCPY_STRUCT_AFTER(material, DNA_struct_default_get(Material), id);
}
static void material_copy_data(Main *bmain, ID *id_dst, const ID *id_src, const int flag)
{
Material *material_dst = (Material *)id_dst;
const Material *material_src = (const Material *)id_src;
/* We always need allocation of our private ID data. */
const int flag_private_id_data = flag & ~LIB_ID_CREATE_NO_ALLOCATE;
if (material_src->nodetree) {
BKE_id_copy_ex(
bmain, (ID *)material_src->nodetree, (ID **)&material_dst->nodetree, flag_private_id_data);
}
if ((flag & LIB_ID_COPY_NO_PREVIEW) == 0) {
BKE_previewimg_id_copy(&material_dst->id, &material_src->id);
}
else {
material_dst->preview = NULL;
}
if (material_src->texpaintslot != NULL) {
material_dst->texpaintslot = MEM_dupallocN(material_src->texpaintslot);
}
if (material_src->gp_style != NULL) {
material_dst->gp_style = MEM_dupallocN(material_src->gp_style);
}
BLI_listbase_clear(&material_dst->gpumaterial);
/* TODO Duplicate Engine Settings and set runtime to NULL */
}
static void material_free_data(ID *id)
{
Material *material = (Material *)id;
/* Free gpu material before the ntree */
GPU_material_free(&material->gpumaterial);
/* is no lib link block, but material extension */
if (material->nodetree) {
ntreeFreeEmbeddedTree(material->nodetree);
MEM_freeN(material->nodetree);
material->nodetree = NULL;
}
MEM_SAFE_FREE(material->texpaintslot);
MEM_SAFE_FREE(material->gp_style);
BKE_icon_id_delete((ID *)material);
BKE_previewimg_free(&material->preview);
}
static void material_foreach_id(ID *id, LibraryForeachIDData *data)
{
Material *material = (Material *)id;
/* Nodetrees **are owned by IDs**, treat them as mere sub-data and not real ID! */
if (!BKE_library_foreach_ID_embedded(data, (ID **)&material->nodetree)) {
return;
}
if (material->texpaintslot != NULL) {
BKE_LIB_FOREACHID_PROCESS(data, material->texpaintslot->ima, IDWALK_CB_NOP);
}
if (material->gp_style != NULL) {
BKE_LIB_FOREACHID_PROCESS(data, material->gp_style->sima, IDWALK_CB_USER);
BKE_LIB_FOREACHID_PROCESS(data, material->gp_style->ima, IDWALK_CB_USER);
}
}
IDTypeInfo IDType_ID_MA = {
.id_code = ID_MA,
.id_filter = FILTER_ID_MA,
.main_listbase_index = INDEX_ID_MA,
.struct_size = sizeof(Material),
.name = "Material",
.name_plural = "materials",
.translation_context = BLT_I18NCONTEXT_ID_MATERIAL,
.flags = 0,
.init_data = material_init_data,
.copy_data = material_copy_data,
.free_data = material_free_data,
.make_local = NULL,
.foreach_id = material_foreach_id,
};
void BKE_gpencil_material_attr_init(Material *ma)
{
if ((ma) && (ma->gp_style == NULL)) {
ma->gp_style = MEM_callocN(sizeof(MaterialGPencilStyle), "Grease Pencil Material Settings");
MaterialGPencilStyle *gp_style = ma->gp_style;
/* set basic settings */
gp_style->stroke_rgba[3] = 1.0f;
gp_style->fill_rgba[3] = 1.0f;
ARRAY_SET_ITEMS(gp_style->mix_rgba, 1.0f, 1.0f, 1.0f, 1.0f);
ARRAY_SET_ITEMS(gp_style->texture_scale, 1.0f, 1.0f);
gp_style->texture_offset[0] = -0.5f;
gp_style->texture_pixsize = 100.0f;
gp_style->mix_factor = 0.5f;
gp_style->flag |= GP_MATERIAL_STROKE_SHOW;
}
}
Material *BKE_material_add(Main *bmain, const char *name)
{
Material *ma;
ma = BKE_libblock_alloc(bmain, ID_MA, name, 0);
material_init_data(&ma->id);
return ma;
}
Material *BKE_gpencil_material_add(Main *bmain, const char *name)
{
Material *ma;
ma = BKE_material_add(bmain, name);
/* grease pencil settings */
if (ma != NULL) {
BKE_gpencil_material_attr_init(ma);
}
return ma;
}
Material *BKE_material_copy(Main *bmain, const Material *ma)
{
Material *ma_copy;
BKE_id_copy(bmain, &ma->id, (ID **)&ma_copy);
return ma_copy;
}
/* XXX (see above) material copy without adding to main dbase */
Material *BKE_material_localize(Material *ma)
{
/* TODO(bastien): Replace with something like:
*
* Material *ma_copy;
* BKE_id_copy_ex(bmain, &ma->id, (ID **)&ma_copy,
* LIB_ID_COPY_NO_MAIN | LIB_ID_COPY_NO_PREVIEW | LIB_ID_COPY_NO_USER_REFCOUNT,
* false);
* return ma_copy;
*
* NOTE: Only possible once nested node trees are fully converted to that too. */
Material *man = BKE_libblock_copy_for_localize(&ma->id);
man->texpaintslot = NULL;
man->preview = NULL;
if (ma->nodetree != NULL) {
man->nodetree = ntreeLocalize(ma->nodetree);
}
if (ma->gp_style != NULL) {
man->gp_style = MEM_dupallocN(ma->gp_style);
}
BLI_listbase_clear(&man->gpumaterial);
/* TODO Duplicate Engine Settings and set runtime to NULL */
man->id.tag |= LIB_TAG_LOCALIZED;
return man;
}
Material ***BKE_object_material_array_p(Object *ob)
{
if (ob->type == OB_MESH) {
Mesh *me = ob->data;
return &(me->mat);
}
else if (ELEM(ob->type, OB_CURVE, OB_FONT, OB_SURF)) {
Curve *cu = ob->data;
return &(cu->mat);
}
else if (ob->type == OB_MBALL) {
MetaBall *mb = ob->data;
return &(mb->mat);
}
else if (ob->type == OB_GPENCIL) {
bGPdata *gpd = ob->data;
return &(gpd->mat);
}
else if (ob->type == OB_HAIR) {
Hair *hair = ob->data;
return &(hair->mat);
}
else if (ob->type == OB_POINTCLOUD) {
PointCloud *pointcloud = ob->data;
return &(pointcloud->mat);
}
else if (ob->type == OB_VOLUME) {
Volume *volume = ob->data;
return &(volume->mat);
}
return NULL;
}
short *BKE_object_material_len_p(Object *ob)
{
if (ob->type == OB_MESH) {
Mesh *me = ob->data;
return &(me->totcol);
}
else if (ELEM(ob->type, OB_CURVE, OB_FONT, OB_SURF)) {
Curve *cu = ob->data;
return &(cu->totcol);
}
else if (ob->type == OB_MBALL) {
MetaBall *mb = ob->data;
return &(mb->totcol);
}
else if (ob->type == OB_GPENCIL) {
bGPdata *gpd = ob->data;
return &(gpd->totcol);
}
else if (ob->type == OB_HAIR) {
Hair *hair = ob->data;
return &(hair->totcol);
}
else if (ob->type == OB_POINTCLOUD) {
PointCloud *pointcloud = ob->data;
return &(pointcloud->totcol);
}
else if (ob->type == OB_VOLUME) {
Volume *volume = ob->data;
return &(volume->totcol);
}
return NULL;
}
/* same as above but for ID's */
Material ***BKE_id_material_array_p(ID *id)
{
/* ensure we don't try get materials from non-obdata */
BLI_assert(OB_DATA_SUPPORT_ID(GS(id->name)));
switch (GS(id->name)) {
case ID_ME:
return &(((Mesh *)id)->mat);
case ID_CU:
return &(((Curve *)id)->mat);
case ID_MB:
return &(((MetaBall *)id)->mat);
case ID_GD:
return &(((bGPdata *)id)->mat);
case ID_HA:
return &(((Hair *)id)->mat);
case ID_PT:
return &(((PointCloud *)id)->mat);
case ID_VO:
return &(((Volume *)id)->mat);
default:
break;
}
return NULL;
}
short *BKE_id_material_len_p(ID *id)
{
/* ensure we don't try get materials from non-obdata */
BLI_assert(OB_DATA_SUPPORT_ID(GS(id->name)));
switch (GS(id->name)) {
case ID_ME:
return &(((Mesh *)id)->totcol);
case ID_CU:
return &(((Curve *)id)->totcol);
case ID_MB:
return &(((MetaBall *)id)->totcol);
case ID_GD:
return &(((bGPdata *)id)->totcol);
case ID_HA:
return &(((Hair *)id)->totcol);
case ID_PT:
return &(((PointCloud *)id)->totcol);
case ID_VO:
return &(((Volume *)id)->totcol);
default:
break;
}
return NULL;
}
static void material_data_index_remove_id(ID *id, short index)
{
/* ensure we don't try get materials from non-obdata */
BLI_assert(OB_DATA_SUPPORT_ID(GS(id->name)));
switch (GS(id->name)) {
case ID_ME:
BKE_mesh_material_index_remove((Mesh *)id, index);
break;
case ID_CU:
BKE_curve_material_index_remove((Curve *)id, index);
break;
case ID_MB:
case ID_HA:
case ID_PT:
case ID_VO:
/* No material indices for these object data types. */
break;
default:
break;
}
}
bool BKE_object_material_slot_used(ID *id, short actcol)
{
/* ensure we don't try get materials from non-obdata */
BLI_assert(OB_DATA_SUPPORT_ID(GS(id->name)));
switch (GS(id->name)) {
case ID_ME:
return BKE_mesh_material_index_used((Mesh *)id, actcol - 1);
case ID_CU:
return BKE_curve_material_index_used((Curve *)id, actcol - 1);
case ID_MB:
/* meta-elems don't have materials atm */
return false;
case ID_GD:
return BKE_gpencil_material_index_used((bGPdata *)id, actcol - 1);
default:
return false;
}
}
static void material_data_index_clear_id(ID *id)
{
/* ensure we don't try get materials from non-obdata */
BLI_assert(OB_DATA_SUPPORT_ID(GS(id->name)));
switch (GS(id->name)) {
case ID_ME:
BKE_mesh_material_index_clear((Mesh *)id);
break;
case ID_CU:
BKE_curve_material_index_clear((Curve *)id);
break;
case ID_MB:
case ID_HA:
case ID_PT:
case ID_VO:
/* No material indices for these object data types. */
break;
default:
break;
}
}
void BKE_id_material_resize(Main *bmain, ID *id, short totcol, bool do_id_user)
{
Material ***matar = BKE_id_material_array_p(id);
short *totcolp = BKE_id_material_len_p(id);
if (matar == NULL) {
return;
}
if (do_id_user && totcol < (*totcolp)) {
short i;
for (i = totcol; i < (*totcolp); i++) {
id_us_min((ID *)(*matar)[i]);
}
}
if (totcol == 0) {
if (*totcolp) {
MEM_freeN(*matar);
*matar = NULL;
}
}
else {
*matar = MEM_recallocN(*matar, sizeof(void *) * totcol);
}
*totcolp = totcol;
DEG_id_tag_update(id, ID_RECALC_COPY_ON_WRITE);
DEG_relations_tag_update(bmain);
}
void BKE_id_material_append(Main *bmain, ID *id, Material *ma)
{
Material ***matar;
if ((matar = BKE_id_material_array_p(id))) {
short *totcol = BKE_id_material_len_p(id);
Material **mat = MEM_callocN(sizeof(void *) * ((*totcol) + 1), "newmatar");
if (*totcol) {
memcpy(mat, *matar, sizeof(void *) * (*totcol));
}
if (*matar) {
MEM_freeN(*matar);
}
*matar = mat;
(*matar)[(*totcol)++] = ma;
id_us_plus((ID *)ma);
BKE_objects_materials_test_all(bmain, id);
DEG_id_tag_update(id, ID_RECALC_COPY_ON_WRITE);
DEG_relations_tag_update(bmain);
}
}
Material *BKE_id_material_pop(Main *bmain, ID *id, int index_i)
{
short index = (short)index_i;
Material *ret = NULL;
Material ***matar;
if ((matar = BKE_id_material_array_p(id))) {
short *totcol = BKE_id_material_len_p(id);
if (index >= 0 && index < (*totcol)) {
ret = (*matar)[index];
id_us_min((ID *)ret);
if (*totcol <= 1) {
*totcol = 0;
MEM_freeN(*matar);
*matar = NULL;
}
else {
if (index + 1 != (*totcol)) {
memmove((*matar) + index,
(*matar) + (index + 1),
sizeof(void *) * ((*totcol) - (index + 1)));
}
(*totcol)--;
*matar = MEM_reallocN(*matar, sizeof(void *) * (*totcol));
BKE_objects_materials_test_all(bmain, id);
}
material_data_index_remove_id(id, index);
DEG_id_tag_update(id, ID_RECALC_COPY_ON_WRITE);
DEG_relations_tag_update(bmain);
}
}
return ret;
}
void BKE_id_material_clear(Main *bmain, ID *id)
{
Material ***matar;
if ((matar = BKE_id_material_array_p(id))) {
short *totcol = BKE_id_material_len_p(id);
while ((*totcol)--) {
id_us_min((ID *)((*matar)[*totcol]));
}
*totcol = 0;
if (*matar) {
MEM_freeN(*matar);
*matar = NULL;
}
BKE_objects_materials_test_all(bmain, id);
material_data_index_clear_id(id);
DEG_id_tag_update(id, ID_RECALC_COPY_ON_WRITE);
DEG_relations_tag_update(bmain);
}
}
Material **BKE_object_material_get_p(Object *ob, short act)
{
Material ***matarar, **ma_p;
const short *totcolp;
if (ob == NULL) {
return NULL;
}
/* if object cannot have material, (totcolp == NULL) */
totcolp = BKE_object_material_len_p(ob);
if (totcolp == NULL || ob->totcol == 0) {
return NULL;
}
/* return NULL for invalid 'act', can happen for mesh face indices */
if (act > ob->totcol) {
return NULL;
}
else if (act <= 0) {
if (act < 0) {
CLOG_ERROR(&LOG, "Negative material index!");
}
return NULL;
}
if (ob->matbits && ob->matbits[act - 1]) { /* in object */
ma_p = &ob->mat[act - 1];
}
else { /* in data */
/* check for inconsistency */
if (*totcolp < ob->totcol) {
ob->totcol = *totcolp;
}
if (act > ob->totcol) {
act = ob->totcol;
}
matarar = BKE_object_material_array_p(ob);
if (matarar && *matarar) {
ma_p = &(*matarar)[act - 1];
}
else {
ma_p = NULL;
}
}
return ma_p;
}
Material *BKE_object_material_get(Object *ob, short act)
{
Material **ma_p = BKE_object_material_get_p(ob, act);
return ma_p ? *ma_p : NULL;
}
Material *BKE_gpencil_material(Object *ob, short act)
{
Material *ma = BKE_object_material_get(ob, act);
if (ma != NULL) {
return ma;
}
else {
return BKE_material_default_gpencil();
}
}
MaterialGPencilStyle *BKE_gpencil_material_settings(Object *ob, short act)
{
Material *ma = BKE_object_material_get(ob, act);
if (ma != NULL) {
if (ma->gp_style == NULL) {
BKE_gpencil_material_attr_init(ma);
}
return ma->gp_style;
}
else {
return BKE_material_default_gpencil()->gp_style;
}
}
void BKE_object_material_resize(Main *bmain, Object *ob, const short totcol, bool do_id_user)
{
Material **newmatar;
char *newmatbits;
if (do_id_user && totcol < ob->totcol) {
for (int i = totcol; i < ob->totcol; i++) {
id_us_min((ID *)ob->mat[i]);
}
}
if (totcol == 0) {
if (ob->totcol) {
MEM_freeN(ob->mat);
MEM_freeN(ob->matbits);
ob->mat = NULL;
ob->matbits = NULL;
}
}
else if (ob->totcol < totcol) {
newmatar = MEM_callocN(sizeof(void *) * totcol, "newmatar");
newmatbits = MEM_callocN(sizeof(char) * totcol, "newmatbits");
if (ob->totcol) {
memcpy(newmatar, ob->mat, sizeof(void *) * ob->totcol);
memcpy(newmatbits, ob->matbits, sizeof(char) * ob->totcol);
MEM_freeN(ob->mat);
MEM_freeN(ob->matbits);
}
ob->mat = newmatar;
ob->matbits = newmatbits;
}
/* XXX, why not realloc on shrink? - campbell */
ob->totcol = totcol;
if (ob->totcol && ob->actcol == 0) {
ob->actcol = 1;
}
if (ob->actcol > ob->totcol) {
ob->actcol = ob->totcol;
}
DEG_id_tag_update(&ob->id, ID_RECALC_COPY_ON_WRITE | ID_RECALC_GEOMETRY);
DEG_relations_tag_update(bmain);
}
void BKE_object_materials_test(Main *bmain, Object *ob, ID *id)
{
/* make the ob mat-array same size as 'ob->data' mat-array */
const short *totcol;
if (id == NULL || (totcol = BKE_id_material_len_p(id)) == NULL) {
return;
}
BKE_object_material_resize(bmain, ob, *totcol, false);
}
void BKE_objects_materials_test_all(Main *bmain, ID *id)
{
/* make the ob mat-array same size as 'ob->data' mat-array */
Object *ob;
const short *totcol;
if (id == NULL || (totcol = BKE_id_material_len_p(id)) == NULL) {
return;
}
BKE_main_lock(bmain);
for (ob = bmain->objects.first; ob; ob = ob->id.next) {
if (ob->data == id) {
BKE_object_material_resize(bmain, ob, *totcol, false);
}
}
BKE_main_unlock(bmain);
}
void BKE_id_material_assign(Main *bmain, ID *id, Material *ma, short act)
{
Material *mao, **matar, ***matarar;
short *totcolp;
if (act > MAXMAT) {
return;
}
if (act < 1) {
act = 1;
}
/* test arraylens */
totcolp = BKE_id_material_len_p(id);
matarar = BKE_id_material_array_p(id);
if (totcolp == NULL || matarar == NULL) {
return;
}
if (act > *totcolp) {
matar = MEM_callocN(sizeof(void *) * act, "matarray1");
if (*totcolp) {
memcpy(matar, *matarar, sizeof(void *) * (*totcolp));
MEM_freeN(*matarar);
}
*matarar = matar;
*totcolp = act;
}
/* in data */
mao = (*matarar)[act - 1];
if (mao) {
id_us_min(&mao->id);
}
(*matarar)[act - 1] = ma;
if (ma) {
id_us_plus(&ma->id);
}
BKE_objects_materials_test_all(bmain, id);
}
void BKE_object_material_assign(Main *bmain, Object *ob, Material *ma, short act, int assign_type)
{
Material *mao, **matar, ***matarar;
short *totcolp;
char bit = 0;
if (act > MAXMAT) {
return;
}
if (act < 1) {
act = 1;
}
/* prevent crashing when using accidentally */
BLI_assert(!ID_IS_LINKED(ob));
if (ID_IS_LINKED(ob)) {
return;
}
/* test arraylens */
totcolp = BKE_object_material_len_p(ob);
matarar = BKE_object_material_array_p(ob);
if (totcolp == NULL || matarar == NULL) {
return;
}
if (act > *totcolp) {
matar = MEM_callocN(sizeof(void *) * act, "matarray1");
if (*totcolp) {
memcpy(matar, *matarar, sizeof(void *) * (*totcolp));
MEM_freeN(*matarar);
}
*matarar = matar;
*totcolp = act;
}
if (act > ob->totcol) {
/* Need more space in the material arrays */
ob->mat = MEM_recallocN_id(ob->mat, sizeof(void *) * act, "matarray2");
ob->matbits = MEM_recallocN_id(ob->matbits, sizeof(char) * act, "matbits1");
ob->totcol = act;
}
/* Determine the object/mesh linking */
if (assign_type == BKE_MAT_ASSIGN_EXISTING) {
/* keep existing option (avoid confusion in scripts),
* intentionally ignore userpref (default to obdata). */
bit = ob->matbits[act - 1];
}
else if (assign_type == BKE_MAT_ASSIGN_USERPREF && ob->totcol && ob->actcol) {
/* copy from previous material */
bit = ob->matbits[ob->actcol - 1];
}
else {
switch (assign_type) {
case BKE_MAT_ASSIGN_OBDATA:
bit = 0;
break;
case BKE_MAT_ASSIGN_OBJECT:
bit = 1;
break;
case BKE_MAT_ASSIGN_USERPREF:
default:
bit = (U.flag & USER_MAT_ON_OB) ? 1 : 0;
break;
}
}
/* do it */
ob->matbits[act - 1] = bit;
if (bit == 1) { /* in object */
mao = ob->mat[act - 1];
if (mao) {
id_us_min(&mao->id);
}
ob->mat[act - 1] = ma;
BKE_object_materials_test(bmain, ob, ob->data);
}
else { /* in data */
mao = (*matarar)[act - 1];
if (mao) {
id_us_min(&mao->id);
}
(*matarar)[act - 1] = ma;
BKE_objects_materials_test_all(bmain, ob->data); /* Data may be used by several objects... */
}
if (ma) {
id_us_plus(&ma->id);
}
}
void BKE_object_material_remap(Object *ob, const unsigned int *remap)
{
Material ***matar = BKE_object_material_array_p(ob);
const short *totcol_p = BKE_object_material_len_p(ob);
BLI_array_permute(ob->mat, ob->totcol, remap);
if (ob->matbits) {
BLI_array_permute(ob->matbits, ob->totcol, remap);
}
if (matar) {
BLI_array_permute(*matar, *totcol_p, remap);
}
if (ob->type == OB_MESH) {
BKE_mesh_material_remap(ob->data, remap, ob->totcol);
}
else if (ELEM(ob->type, OB_CURVE, OB_SURF, OB_FONT)) {
BKE_curve_material_remap(ob->data, remap, ob->totcol);
}
else if (ob->type == OB_GPENCIL) {
BKE_gpencil_material_remap(ob->data, remap, ob->totcol);
}
else {
/* add support for this object data! */
BLI_assert(matar == NULL);
}
}
/**
* Calculate a material remapping from \a ob_src to \a ob_dst.
*
* \param remap_src_to_dst: An array the size of `ob_src->totcol`
* where index values are filled in which map to \a ob_dst materials.
*/
void BKE_object_material_remap_calc(Object *ob_dst, Object *ob_src, short *remap_src_to_dst)
{
if (ob_src->totcol == 0) {
return;
}
GHash *gh_mat_map = BLI_ghash_ptr_new_ex(__func__, ob_src->totcol);
for (int i = 0; i < ob_dst->totcol; i++) {
Material *ma_src = BKE_object_material_get(ob_dst, i + 1);
BLI_ghash_reinsert(gh_mat_map, ma_src, POINTER_FROM_INT(i), NULL, NULL);
}
/* setup default mapping (when materials don't match) */
{
int i = 0;
if (ob_dst->totcol >= ob_src->totcol) {
for (; i < ob_src->totcol; i++) {
remap_src_to_dst[i] = i;
}
}
else {
for (; i < ob_dst->totcol; i++) {
remap_src_to_dst[i] = i;
}
for (; i < ob_src->totcol; i++) {
remap_src_to_dst[i] = 0;
}
}
}
for (int i = 0; i < ob_src->totcol; i++) {
Material *ma_src = BKE_object_material_get(ob_src, i + 1);
if ((i < ob_dst->totcol) && (ma_src == BKE_object_material_get(ob_dst, i + 1))) {
/* when objects have exact matching materials - keep existing index */
}
else {
void **index_src_p = BLI_ghash_lookup_p(gh_mat_map, ma_src);
if (index_src_p) {
remap_src_to_dst[i] = POINTER_AS_INT(*index_src_p);
}
}
}
BLI_ghash_free(gh_mat_map, NULL, NULL);
}
/* XXX - this calls many more update calls per object then are needed, could be optimized */
void BKE_object_material_array_assign(Main *bmain,
struct Object *ob,
struct Material ***matar,
short totcol)
{
int actcol_orig = ob->actcol;
short i;
while ((ob->totcol > totcol) && BKE_object_material_slot_remove(bmain, ob)) {
/* pass */
}
/* now we have the right number of slots */
for (i = 0; i < totcol; i++) {
BKE_object_material_assign(bmain, ob, (*matar)[i], i + 1, BKE_MAT_ASSIGN_USERPREF);
}
if (actcol_orig > ob->totcol) {
actcol_orig = ob->totcol;
}
ob->actcol = actcol_orig;
}
short BKE_object_material_slot_find_index(Object *ob, Material *ma)
{
Material ***matarar;
short a, *totcolp;
if (ma == NULL) {
return 0;
}
totcolp = BKE_object_material_len_p(ob);
matarar = BKE_object_material_array_p(ob);
if (totcolp == NULL || matarar == NULL) {
return 0;
}
for (a = 0; a < *totcolp; a++) {
if ((*matarar)[a] == ma) {
break;
}
}
if (a < *totcolp) {
return a + 1;
}
return 0;
}
bool BKE_object_material_slot_add(Main *bmain, Object *ob)
{
if (ob == NULL) {
return false;
}
if (ob->totcol >= MAXMAT) {
return false;
}
BKE_object_material_assign(bmain, ob, NULL, ob->totcol + 1, BKE_MAT_ASSIGN_USERPREF);
ob->actcol = ob->totcol;
return true;
}
/* ****************** */
bool BKE_object_material_slot_remove(Main *bmain, Object *ob)
{
Material *mao, ***matarar;
short *totcolp;
if (ob == NULL || ob->totcol == 0) {
return false;
}
/* this should never happen and used to crash */
if (ob->actcol <= 0) {
CLOG_ERROR(&LOG, "invalid material index %d, report a bug!", ob->actcol);
BLI_assert(0);
return false;
}
/* take a mesh/curve/mball as starting point, remove 1 index,
* AND with all objects that share the ob->data
*
* after that check indices in mesh/curve/mball!!!
*/
totcolp = BKE_object_material_len_p(ob);
matarar = BKE_object_material_array_p(ob);
if (ELEM(NULL, matarar, *matarar)) {
return false;
}
/* can happen on face selection in editmode */
if (ob->actcol > ob->totcol) {
ob->actcol = ob->totcol;
}
/* we delete the actcol */
mao = (*matarar)[ob->actcol - 1];
if (mao) {
id_us_min(&mao->id);
}
for (int a = ob->actcol; a < ob->totcol; a++) {
(*matarar)[a - 1] = (*matarar)[a];
}
(*totcolp)--;
if (*totcolp == 0) {
MEM_freeN(*matarar);
*matarar = NULL;
}
const int actcol = ob->actcol;
for (Object *obt = bmain->objects.first; obt; obt = obt->id.next) {
if (obt->data == ob->data) {
/* Can happen when object material lists are used, see: T52953 */
if (actcol > obt->totcol) {
continue;
}
/* WATCH IT: do not use actcol from ob or from obt (can become zero) */
mao = obt->mat[actcol - 1];
if (mao) {
id_us_min(&mao->id);
}
for (int a = actcol; a < obt->totcol; a++) {
obt->mat[a - 1] = obt->mat[a];
obt->matbits[a - 1] = obt->matbits[a];
}
obt->totcol--;
if (obt->actcol > obt->totcol) {
obt->actcol = obt->totcol;
}
if (obt->totcol == 0) {
MEM_freeN(obt->mat);
MEM_freeN(obt->matbits);
obt->mat = NULL;
obt->matbits = NULL;
}
}
}
/* check indices from mesh */
if (ELEM(ob->type, OB_MESH, OB_CURVE, OB_SURF, OB_FONT)) {
material_data_index_remove_id((ID *)ob->data, actcol - 1);
if (ob->runtime.curve_cache) {
BKE_displist_free(&ob->runtime.curve_cache->disp);
}
}
/* check indices from gpencil */
else if (ob->type == OB_GPENCIL) {
BKE_gpencil_material_index_reassign((bGPdata *)ob->data, ob->totcol, actcol - 1);
}
return true;
}
static bNode *nodetree_uv_node_recursive(bNode *node)
{
bNode *inode;
bNodeSocket *sock;
for (sock = node->inputs.first; sock; sock = sock->next) {
if (sock->link) {
inode = sock->link->fromnode;
if (inode->typeinfo->nclass == NODE_CLASS_INPUT && inode->typeinfo->type == SH_NODE_UVMAP) {
return inode;
}
else {
return nodetree_uv_node_recursive(inode);
}
}
}
return NULL;
}
typedef bool (*ForEachTexNodeCallback)(bNode *node, void *userdata);
static bool ntree_foreach_texnode_recursive(bNodeTree *nodetree,
ForEachTexNodeCallback callback,
void *userdata)
{
LISTBASE_FOREACH (bNode *, node, &nodetree->nodes) {
if (node->typeinfo->nclass == NODE_CLASS_TEXTURE &&
node->typeinfo->type == SH_NODE_TEX_IMAGE && node->id) {
if (!callback(node, userdata)) {
return false;
}
}
else if (ELEM(node->type, NODE_GROUP, NODE_CUSTOM_GROUP) && node->id) {
/* recurse into the node group and see if it contains any textures */
if (!ntree_foreach_texnode_recursive((bNodeTree *)node->id, callback, userdata)) {
return false;
}
}
}
return true;
}
static bool count_texture_nodes_cb(bNode *UNUSED(node), void *userdata)
{
(*((int *)userdata))++;
return true;
}
static int count_texture_nodes_recursive(bNodeTree *nodetree)
{
int tex_nodes = 0;
ntree_foreach_texnode_recursive(nodetree, count_texture_nodes_cb, &tex_nodes);
return tex_nodes;
}
struct FillTexPaintSlotsData {
bNode *active_node;
Material *ma;
int index;
int slot_len;
};
static bool fill_texpaint_slots_cb(bNode *node, void *userdata)
{
struct FillTexPaintSlotsData *fill_data = userdata;
Material *ma = fill_data->ma;
int index = fill_data->index;
fill_data->index++;
if (fill_data->active_node == node) {
ma->paint_active_slot = index;
}
ma->texpaintslot[index].ima = (Image *)node->id;
ma->texpaintslot[index].interp = ((NodeTexImage *)node->storage)->interpolation;
/* for new renderer, we need to traverse the treeback in search of a UV node */
bNode *uvnode = nodetree_uv_node_recursive(node);
if (uvnode) {
NodeShaderUVMap *storage = (NodeShaderUVMap *)uvnode->storage;
ma->texpaintslot[index].uvname = storage->uv_map;
/* set a value to index so UI knows that we have a valid pointer for the mesh */
ma->texpaintslot[index].valid = true;
}
else {
/* just invalidate the index here so UV map does not get displayed on the UI */
ma->texpaintslot[index].valid = false;
}
return fill_data->index != fill_data->slot_len;
}
static void fill_texpaint_slots_recursive(bNodeTree *nodetree,
bNode *active_node,
Material *ma,
int slot_len)
{
struct FillTexPaintSlotsData fill_data = {active_node, ma, 0, slot_len};
ntree_foreach_texnode_recursive(nodetree, fill_texpaint_slots_cb, &fill_data);
}
void BKE_texpaint_slot_refresh_cache(Scene *scene, Material *ma)
{
int count = 0;
if (!ma) {
return;
}
/* COW needed when adding texture slot on an object with no materials. */
DEG_id_tag_update(&ma->id, ID_RECALC_SHADING | ID_RECALC_COPY_ON_WRITE);
if (ma->texpaintslot) {
MEM_freeN(ma->texpaintslot);
ma->tot_slots = 0;
ma->texpaintslot = NULL;
}
if (scene->toolsettings->imapaint.mode == IMAGEPAINT_MODE_IMAGE) {
ma->paint_active_slot = 0;
ma->paint_clone_slot = 0;
return;
}
if (!(ma->nodetree)) {
ma->paint_active_slot = 0;
ma->paint_clone_slot = 0;
return;
}
count = count_texture_nodes_recursive(ma->nodetree);
if (count == 0) {
ma->paint_active_slot = 0;
ma->paint_clone_slot = 0;
return;
}
ma->texpaintslot = MEM_callocN(sizeof(*ma->texpaintslot) * count, "texpaint_slots");
bNode *active_node = nodeGetActiveTexture(ma->nodetree);
fill_texpaint_slots_recursive(ma->nodetree, active_node, ma, count);
ma->tot_slots = count;
if (ma->paint_active_slot >= count) {
ma->paint_active_slot = count - 1;
}
if (ma->paint_clone_slot >= count) {
ma->paint_clone_slot = count - 1;
}
return;
}
void BKE_texpaint_slots_refresh_object(Scene *scene, struct Object *ob)
{
int i;
for (i = 1; i < ob->totcol + 1; i++) {
Material *ma = BKE_object_material_get(ob, i);
BKE_texpaint_slot_refresh_cache(scene, ma);
}
}
struct FindTexPaintNodeData {
bNode *node;
short iter_index;
short index;
};
static bool texpaint_slot_node_find_cb(bNode *node, void *userdata)
{
struct FindTexPaintNodeData *find_data = userdata;
if (find_data->iter_index++ == find_data->index) {
find_data->node = node;
return false;
}
return true;
}
bNode *BKE_texpaint_slot_material_find_node(Material *ma, short texpaint_slot)
{
struct FindTexPaintNodeData find_data = {NULL, 0, texpaint_slot};
ntree_foreach_texnode_recursive(ma->nodetree, texpaint_slot_node_find_cb, &find_data);
return find_data.node;
}
/* r_col = current value, col = new value, (fac == 0) is no change */
void ramp_blend(int type, float r_col[3], const float fac, const float col[3])
{
float tmp, facm = 1.0f - fac;
switch (type) {
case MA_RAMP_BLEND:
r_col[0] = facm * (r_col[0]) + fac * col[0];
r_col[1] = facm * (r_col[1]) + fac * col[1];
r_col[2] = facm * (r_col[2]) + fac * col[2];
break;
case MA_RAMP_ADD:
r_col[0] += fac * col[0];
r_col[1] += fac * col[1];
r_col[2] += fac * col[2];
break;
case MA_RAMP_MULT:
r_col[0] *= (facm + fac * col[0]);
r_col[1] *= (facm + fac * col[1]);
r_col[2] *= (facm + fac * col[2]);
break;
case MA_RAMP_SCREEN:
r_col[0] = 1.0f - (facm + fac * (1.0f - col[0])) * (1.0f - r_col[0]);
r_col[1] = 1.0f - (facm + fac * (1.0f - col[1])) * (1.0f - r_col[1]);
r_col[2] = 1.0f - (facm + fac * (1.0f - col[2])) * (1.0f - r_col[2]);
break;
case MA_RAMP_OVERLAY:
if (r_col[0] < 0.5f) {
r_col[0] *= (facm + 2.0f * fac * col[0]);
}
else {
r_col[0] = 1.0f - (facm + 2.0f * fac * (1.0f - col[0])) * (1.0f - r_col[0]);
}
if (r_col[1] < 0.5f) {
r_col[1] *= (facm + 2.0f * fac * col[1]);
}
else {
r_col[1] = 1.0f - (facm + 2.0f * fac * (1.0f - col[1])) * (1.0f - r_col[1]);
}
if (r_col[2] < 0.5f) {
r_col[2] *= (facm + 2.0f * fac * col[2]);
}
else {
r_col[2] = 1.0f - (facm + 2.0f * fac * (1.0f - col[2])) * (1.0f - r_col[2]);
}
break;
case MA_RAMP_SUB:
r_col[0] -= fac * col[0];
r_col[1] -= fac * col[1];
r_col[2] -= fac * col[2];
break;
case MA_RAMP_DIV:
if (col[0] != 0.0f) {
r_col[0] = facm * (r_col[0]) + fac * (r_col[0]) / col[0];
}
if (col[1] != 0.0f) {
r_col[1] = facm * (r_col[1]) + fac * (r_col[1]) / col[1];
}
if (col[2] != 0.0f) {
r_col[2] = facm * (r_col[2]) + fac * (r_col[2]) / col[2];
}
break;
case MA_RAMP_DIFF:
r_col[0] = facm * (r_col[0]) + fac * fabsf(r_col[0] - col[0]);
r_col[1] = facm * (r_col[1]) + fac * fabsf(r_col[1] - col[1]);
r_col[2] = facm * (r_col[2]) + fac * fabsf(r_col[2] - col[2]);
break;
case MA_RAMP_DARK:
r_col[0] = min_ff(r_col[0], col[0]) * fac + r_col[0] * facm;
r_col[1] = min_ff(r_col[1], col[1]) * fac + r_col[1] * facm;
r_col[2] = min_ff(r_col[2], col[2]) * fac + r_col[2] * facm;
break;
case MA_RAMP_LIGHT:
tmp = fac * col[0];
if (tmp > r_col[0]) {
r_col[0] = tmp;
}
tmp = fac * col[1];
if (tmp > r_col[1]) {
r_col[1] = tmp;
}
tmp = fac * col[2];
if (tmp > r_col[2]) {
r_col[2] = tmp;
}
break;
case MA_RAMP_DODGE:
if (r_col[0] != 0.0f) {
tmp = 1.0f - fac * col[0];
if (tmp <= 0.0f) {
r_col[0] = 1.0f;
}
else if ((tmp = (r_col[0]) / tmp) > 1.0f) {
r_col[0] = 1.0f;
}
else {
r_col[0] = tmp;
}
}
if (r_col[1] != 0.0f) {
tmp = 1.0f - fac * col[1];
if (tmp <= 0.0f) {
r_col[1] = 1.0f;
}
else if ((tmp = (r_col[1]) / tmp) > 1.0f) {
r_col[1] = 1.0f;
}
else {
r_col[1] = tmp;
}
}
if (r_col[2] != 0.0f) {
tmp = 1.0f - fac * col[2];
if (tmp <= 0.0f) {
r_col[2] = 1.0f;
}
else if ((tmp = (r_col[2]) / tmp) > 1.0f) {
r_col[2] = 1.0f;
}
else {
r_col[2] = tmp;
}
}
break;
case MA_RAMP_BURN:
tmp = facm + fac * col[0];
if (tmp <= 0.0f) {
r_col[0] = 0.0f;
}
else if ((tmp = (1.0f - (1.0f - (r_col[0])) / tmp)) < 0.0f) {
r_col[0] = 0.0f;
}
else if (tmp > 1.0f) {
r_col[0] = 1.0f;
}
else {
r_col[0] = tmp;
}
tmp = facm + fac * col[1];
if (tmp <= 0.0f) {
r_col[1] = 0.0f;
}
else if ((tmp = (1.0f - (1.0f - (r_col[1])) / tmp)) < 0.0f) {
r_col[1] = 0.0f;
}
else if (tmp > 1.0f) {
r_col[1] = 1.0f;
}
else {
r_col[1] = tmp;
}
tmp = facm + fac * col[2];
if (tmp <= 0.0f) {
r_col[2] = 0.0f;
}
else if ((tmp = (1.0f - (1.0f - (r_col[2])) / tmp)) < 0.0f) {
r_col[2] = 0.0f;
}
else if (tmp > 1.0f) {
r_col[2] = 1.0f;
}
else {
r_col[2] = tmp;
}
break;
case MA_RAMP_HUE: {
float rH, rS, rV;
float colH, colS, colV;
float tmpr, tmpg, tmpb;
rgb_to_hsv(col[0], col[1], col[2], &colH, &colS, &colV);
if (colS != 0) {
rgb_to_hsv(r_col[0], r_col[1], r_col[2], &rH, &rS, &rV);
hsv_to_rgb(colH, rS, rV, &tmpr, &tmpg, &tmpb);
r_col[0] = facm * (r_col[0]) + fac * tmpr;
r_col[1] = facm * (r_col[1]) + fac * tmpg;
r_col[2] = facm * (r_col[2]) + fac * tmpb;
}
break;
}
case MA_RAMP_SAT: {
float rH, rS, rV;
float colH, colS, colV;
rgb_to_hsv(r_col[0], r_col[1], r_col[2], &rH, &rS, &rV);
if (rS != 0) {
rgb_to_hsv(col[0], col[1], col[2], &colH, &colS, &colV);
hsv_to_rgb(rH, (facm * rS + fac * colS), rV, r_col + 0, r_col + 1, r_col + 2);
}
break;
}
case MA_RAMP_VAL: {
float rH, rS, rV;
float colH, colS, colV;
rgb_to_hsv(r_col[0], r_col[1], r_col[2], &rH, &rS, &rV);
rgb_to_hsv(col[0], col[1], col[2], &colH, &colS, &colV);
hsv_to_rgb(rH, rS, (facm * rV + fac * colV), r_col + 0, r_col + 1, r_col + 2);
break;
}
case MA_RAMP_COLOR: {
float rH, rS, rV;
float colH, colS, colV;
float tmpr, tmpg, tmpb;
rgb_to_hsv(col[0], col[1], col[2], &colH, &colS, &colV);
if (colS != 0) {
rgb_to_hsv(r_col[0], r_col[1], r_col[2], &rH, &rS, &rV);
hsv_to_rgb(colH, colS, rV, &tmpr, &tmpg, &tmpb);
r_col[0] = facm * (r_col[0]) + fac * tmpr;
r_col[1] = facm * (r_col[1]) + fac * tmpg;
r_col[2] = facm * (r_col[2]) + fac * tmpb;
}
break;
}
case MA_RAMP_SOFT: {
float scr, scg, scb;
/* first calculate non-fac based Screen mix */
scr = 1.0f - (1.0f - col[0]) * (1.0f - r_col[0]);
scg = 1.0f - (1.0f - col[1]) * (1.0f - r_col[1]);
scb = 1.0f - (1.0f - col[2]) * (1.0f - r_col[2]);
r_col[0] = facm * (r_col[0]) +
fac * (((1.0f - r_col[0]) * col[0] * (r_col[0])) + (r_col[0] * scr));
r_col[1] = facm * (r_col[1]) +
fac * (((1.0f - r_col[1]) * col[1] * (r_col[1])) + (r_col[1] * scg));
r_col[2] = facm * (r_col[2]) +
fac * (((1.0f - r_col[2]) * col[2] * (r_col[2])) + (r_col[2] * scb));
break;
}
case MA_RAMP_LINEAR:
if (col[0] > 0.5f) {
r_col[0] = r_col[0] + fac * (2.0f * (col[0] - 0.5f));
}
else {
r_col[0] = r_col[0] + fac * (2.0f * (col[0]) - 1.0f);
}
if (col[1] > 0.5f) {
r_col[1] = r_col[1] + fac * (2.0f * (col[1] - 0.5f));
}
else {
r_col[1] = r_col[1] + fac * (2.0f * (col[1]) - 1.0f);
}
if (col[2] > 0.5f) {
r_col[2] = r_col[2] + fac * (2.0f * (col[2] - 0.5f));
}
else {
r_col[2] = r_col[2] + fac * (2.0f * (col[2]) - 1.0f);
}
break;
}
}
/**
* \brief copy/paste buffer, if we had a proper py api that would be better
* \note matcopybuf.nodetree does _NOT_ use ID's
* \todo matcopybuf.nodetree's node->id's are NOT validated, this will crash!
*/
static Material matcopybuf;
static short matcopied = 0;
void BKE_material_copybuf_clear(void)
{
memset(&matcopybuf, 0, sizeof(Material));
matcopied = 0;
}
void BKE_material_copybuf_free(void)
{
if (matcopybuf.nodetree) {
ntreeFreeLocalTree(matcopybuf.nodetree);
MEM_freeN(matcopybuf.nodetree);
matcopybuf.nodetree = NULL;
}
matcopied = 0;
}
void BKE_material_copybuf_copy(Main *bmain, Material *ma)
{
if (matcopied) {
BKE_material_copybuf_free();
}
memcpy(&matcopybuf, ma, sizeof(Material));
if (ma->nodetree != NULL) {
matcopybuf.nodetree = ntreeCopyTree_ex(ma->nodetree, bmain, false);
}
matcopybuf.preview = NULL;
BLI_listbase_clear(&matcopybuf.gpumaterial);
/* TODO Duplicate Engine Settings and set runtime to NULL */
matcopied = 1;
}
void BKE_material_copybuf_paste(Main *bmain, Material *ma)
{
ID id;
if (matcopied == 0) {
return;
}
/* Free gpu material before the ntree */
GPU_material_free(&ma->gpumaterial);
if (ma->nodetree) {
ntreeFreeEmbeddedTree(ma->nodetree);
MEM_freeN(ma->nodetree);
}
id = (ma->id);
memcpy(ma, &matcopybuf, sizeof(Material));
(ma->id) = id;
if (matcopybuf.nodetree != NULL) {
ma->nodetree = ntreeCopyTree_ex(matcopybuf.nodetree, bmain, false);
}
}
void BKE_material_eval(struct Depsgraph *depsgraph, Material *material)
{
DEG_debug_print_eval(depsgraph, __func__, material->id.name, material);
GPU_material_free(&material->gpumaterial);
}
/* Default Materials
*
* Used for rendering when objects have no materials assigned, and initializing
* default shader nodes. */
static Material default_material_empty;
static Material default_material_holdout;
static Material default_material_surface;
static Material default_material_volume;
static Material default_material_gpencil;
static Material *default_materials[] = {&default_material_empty,
&default_material_holdout,
&default_material_surface,
&default_material_volume,
&default_material_gpencil,
NULL};
static void material_default_gpencil_init(Material *ma)
{
strcpy(ma->id.name, "MADefault GPencil");
BKE_gpencil_material_attr_init(ma);
add_v3_fl(&ma->gp_style->stroke_rgba[0], 0.6f);
}
static void material_default_surface_init(Material *ma)
{
bNodeTree *ntree = ntreeAddTree(NULL, "Shader Nodetree", ntreeType_Shader->idname);
ma->nodetree = ntree;
ma->use_nodes = true;
bNode *principled = nodeAddStaticNode(NULL, ntree, SH_NODE_BSDF_PRINCIPLED);
bNodeSocket *base_color = nodeFindSocket(principled, SOCK_IN, "Base Color");
copy_v3_v3(((bNodeSocketValueRGBA *)base_color->default_value)->value, &ma->r);
bNode *output = nodeAddStaticNode(NULL, ntree, SH_NODE_OUTPUT_MATERIAL);
nodeAddLink(ntree,
principled,
nodeFindSocket(principled, SOCK_OUT, "BSDF"),
output,
nodeFindSocket(output, SOCK_IN, "Surface"));
principled->locx = 10.0f;
principled->locy = 300.0f;
output->locx = 300.0f;
output->locy = 300.0f;
nodeSetActive(ntree, output);
}
static void material_default_volume_init(Material *ma)
{
bNodeTree *ntree = ntreeAddTree(NULL, "Shader Nodetree", ntreeType_Shader->idname);
ma->nodetree = ntree;
ma->use_nodes = true;
bNode *principled = nodeAddStaticNode(NULL, ntree, SH_NODE_VOLUME_PRINCIPLED);
bNode *output = nodeAddStaticNode(NULL, ntree, SH_NODE_OUTPUT_MATERIAL);
nodeAddLink(ntree,
principled,
nodeFindSocket(principled, SOCK_OUT, "Volume"),
output,
nodeFindSocket(output, SOCK_IN, "Volume"));
principled->locx = 10.0f;
principled->locy = 300.0f;
output->locx = 300.0f;
output->locy = 300.0f;
nodeSetActive(ntree, output);
}
Material *BKE_material_default_empty(void)
{
return &default_material_empty;
}
Material *BKE_material_default_holdout(void)
{
return &default_material_holdout;
}
Material *BKE_material_default_surface(void)
{
return &default_material_surface;
}
Material *BKE_material_default_volume(void)
{
return &default_material_volume;
}
Material *BKE_material_default_gpencil(void)
{
return &default_material_gpencil;
}
void BKE_material_defaults_free_gpu(void)
{
for (int i = 0; default_materials[i]; i++) {
Material *ma = default_materials[i];
if (ma->gpumaterial.first) {
GPU_material_free(&ma->gpumaterial);
}
}
}
/* Module functions called on startup and exit. */
void BKE_materials_init(void)
{
for (int i = 0; default_materials[i]; i++) {
material_init_data(&default_materials[i]->id);
}
material_default_surface_init(&default_material_surface);
material_default_volume_init(&default_material_volume);
material_default_gpencil_init(&default_material_gpencil);
}
void BKE_materials_exit(void)
{
for (int i = 0; default_materials[i]; i++) {
material_free_data(&default_materials[i]->id);
}
}