tornavis/source/blender/editors/transform/transform_input.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

503 lines
14 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 14:34:04 +01:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup edtransform
2011-02-27 21:29:51 +01:00
*/
#include <math.h>
#include <stdlib.h>
#include "DNA_screen_types.h"
#include "BKE_context.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "WM_api.h"
#include "WM_types.h"
#include "transform.h"
2018-05-13 06:44:03 +02:00
#include "MEM_guardedalloc.h"
2020-03-25 06:36:01 +01:00
/* -------------------------------------------------------------------- */
/** \name Callbacks for #MouseInput.apply
* \{ */
2020-03-25 06:36:01 +01:00
/** Callback for #INPUT_VECTOR */
static void InputVector(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
convertViewVec(t, output, mval[0] - mi->imval[0], mval[1] - mi->imval[1]);
}
2020-03-25 06:36:01 +01:00
/** Callback for #INPUT_SPRING */
static void InputSpring(TransInfo *UNUSED(t),
MouseInput *mi,
const double mval[2],
float output[3])
{
double dx, dy;
float ratio;
2015-12-02 05:52:47 +01:00
dx = ((double)mi->center[0] - mval[0]);
dy = ((double)mi->center[1] - mval[1]);
ratio = hypot(dx, dy) / (double)mi->factor;
output[0] = ratio;
}
2020-03-25 06:36:01 +01:00
/** Callback for #INPUT_SPRING_FLIP */
static void InputSpringFlip(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
InputSpring(t, mi, mval, output);
/* flip scale */
/* values can become really big when zoomed in so use longs T26598. */
2019-10-24 09:15:08 +02:00
if (((int64_t)((int)mi->center[0] - mval[0]) * (int64_t)((int)mi->center[0] - mi->imval[0]) +
(int64_t)((int)mi->center[1] - mval[1]) * (int64_t)((int)mi->center[1] - mi->imval[1])) <
2015-12-02 05:52:47 +01:00
0) {
output[0] *= -1.0f;
2012-05-20 23:23:26 +02:00
}
}
2020-03-25 06:36:01 +01:00
/** Callback for #INPUT_SPRING_DELTA */
static void InputSpringDelta(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
InputSpring(t, mi, mval, output);
output[0] -= 1.0f;
}
2020-03-25 06:36:01 +01:00
/** Callback for #INPUT_TRACKBALL */
static void InputTrackBall(TransInfo *UNUSED(t),
MouseInput *mi,
const double mval[2],
float output[3])
{
output[0] = (float)(mi->imval[1] - mval[1]);
output[1] = (float)(mval[0] - mi->imval[0]);
output[0] *= mi->factor;
output[1] *= mi->factor;
}
2020-03-25 06:36:01 +01:00
/** Callback for #INPUT_HORIZONTAL_RATIO */
static void InputHorizontalRatio(TransInfo *t,
MouseInput *mi,
const double mval[2],
float output[3])
{
const int winx = t->region ? t->region->winx : 1;
output[0] = ((mval[0] - mi->imval[0]) / winx) * 2.0f;
}
2020-03-25 06:36:01 +01:00
/** Callback for #INPUT_HORIZONTAL_ABSOLUTE */
static void InputHorizontalAbsolute(TransInfo *t,
MouseInput *mi,
const double mval[2],
float output[3])
{
float vec[3];
InputVector(t, mi, mval, vec);
project_v3_v3v3(vec, vec, t->viewinv[0]);
output[0] = dot_v3v3(t->viewinv[0], vec) * 2.0f;
}
static void InputVerticalRatio(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
const int winy = t->region ? t->region->winy : 1;
/* Dragging up increases (matching viewport zoom). */
output[0] = ((mval[1] - mi->imval[1]) / winy) * 2.0f;
}
2020-03-25 06:36:01 +01:00
/** Callback for #INPUT_VERTICAL_ABSOLUTE */
static void InputVerticalAbsolute(TransInfo *t,
MouseInput *mi,
const double mval[2],
float output[3])
{
float vec[3];
InputVector(t, mi, mval, vec);
project_v3_v3v3(vec, vec, t->viewinv[1]);
/* Dragging up increases (matching viewport zoom). */
output[0] = dot_v3v3(t->viewinv[1], vec) * 2.0f;
}
2020-03-25 06:36:01 +01:00
/** Callback for #INPUT_CUSTOM_RATIO_FLIP */
static void InputCustomRatioFlip(TransInfo *UNUSED(t),
MouseInput *mi,
const double mval[2],
float output[3])
{
double length;
double distance;
double dx, dy;
const int *data = mi->data;
2018-05-13 06:44:03 +02:00
if (data) {
int mdx, mdy;
dx = data[2] - data[0];
dy = data[3] - data[1];
length = hypot(dx, dy);
mdx = mval[0] - data[2];
mdy = mval[1] - data[3];
distance = (length != 0.0) ? (mdx * dx + mdy * dy) / length : 0.0;
output[0] = (length != 0.0) ? (double)(distance / length) : 0.0;
}
}
2020-03-25 06:36:01 +01:00
/** Callback for #INPUT_CUSTOM_RATIO */
static void InputCustomRatio(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
InputCustomRatioFlip(t, mi, mval, output);
output[0] = -output[0];
}
struct InputAngle_Data {
double angle;
double mval_prev[2];
};
2020-03-25 06:36:01 +01:00
/** Callback for #INPUT_ANGLE */
static void InputAngle(TransInfo *UNUSED(t), MouseInput *mi, const double mval[2], float output[3])
{
struct InputAngle_Data *data = mi->data;
2015-12-02 05:52:47 +01:00
double dx2 = mval[0] - (double)mi->center[0];
double dy2 = mval[1] - (double)mi->center[1];
2012-06-11 00:13:17 +02:00
double B = sqrt(dx2 * dx2 + dy2 * dy2);
2015-12-02 05:52:47 +01:00
double dx1 = data->mval_prev[0] - (double)mi->center[0];
double dy1 = data->mval_prev[1] - (double)mi->center[1];
2012-06-11 00:13:17 +02:00
double A = sqrt(dx1 * dx1 + dy1 * dy1);
double dx3 = mval[0] - data->mval_prev[0];
double dy3 = mval[1] - data->mval_prev[1];
/* use doubles here, to make sure a "1.0" (no rotation)
* doesn't become 9.999999e-01, which gives 0.02 for acos */
2012-05-09 11:24:15 +02:00
double deler = (((dx1 * dx1 + dy1 * dy1) + (dx2 * dx2 + dy2 * dy2) - (dx3 * dx3 + dy3 * dy3)) /
2017-05-16 04:46:52 +02:00
(2.0 * (((A * B) != 0.0) ? (A * B) : 1.0)));
2013-02-02 05:58:03 +01:00
/* ((A * B) ? (A * B) : 1.0) this takes care of potential divide by zero errors */
float dphi;
dphi = saacos((float)deler);
2019-04-22 01:19:45 +02:00
if ((dx1 * dy2 - dx2 * dy1) > 0.0) {
2012-06-11 00:13:17 +02:00
dphi = -dphi;
2019-04-22 01:19:45 +02:00
}
/* If the angle is zero, because of lack of precision close to the 1.0 value in acos
* approximate the angle with the opposite side of the normalized triangle
* This is a good approximation here since the smallest acos value seems to be around
* 0.02 degree and lower values don't even have a 0.01% error compared to the approximation
*/
if (dphi == 0) {
double dx, dy;
dx2 /= A;
dy2 /= A;
dx1 /= B;
dy1 /= B;
dx = dx1 - dx2;
dy = dy1 - dy2;
2012-06-11 00:13:17 +02:00
dphi = sqrt(dx * dx + dy * dy);
2019-04-22 01:19:45 +02:00
if ((dx1 * dy2 - dx2 * dy1) > 0.0) {
2012-06-11 00:13:17 +02:00
dphi = -dphi;
2019-04-22 01:19:45 +02:00
}
}
2015-12-02 05:52:47 +01:00
data->angle += ((double)dphi) * (mi->precision ? (double)mi->precision_factor : 1.0);
data->mval_prev[0] = mval[0];
data->mval_prev[1] = mval[1];
output[0] = data->angle;
}
static void InputAngleSpring(TransInfo *t, MouseInput *mi, const double mval[2], float output[3])
{
float toutput[3];
InputAngle(t, mi, mval, output);
InputSpring(t, mi, mval, toutput);
output[1] = toutput[0];
}
2020-03-25 06:36:01 +01:00
/** \} */
/* -------------------------------------------------------------------- */
/** \name Custom 2D Start/End Coordinate API
*
* - #INPUT_CUSTOM_RATIO
* - #INPUT_CUSTOM_RATIO_FLIP
* \{ */
void setCustomPoints(TransInfo *UNUSED(t),
MouseInput *mi,
const int mval_start[2],
const int mval_end[2])
{
int *data;
mi->data = MEM_reallocN(mi->data, sizeof(int[4]));
2020-03-25 06:36:01 +01:00
data = mi->data;
data[0] = mval_start[0];
data[1] = mval_start[1];
data[2] = mval_end[0];
data[3] = mval_end[1];
}
void setCustomPointsFromDirection(TransInfo *t, MouseInput *mi, const float dir[2])
{
BLI_ASSERT_UNIT_V2(dir);
const int win_axis = t->region ? ((abs((int)(t->region->winx * dir[0])) +
abs((int)(t->region->winy * dir[1]))) /
2) :
1;
const int mval_start[2] = {
mi->imval[0] + dir[0] * win_axis,
mi->imval[1] + dir[1] * win_axis,
};
const int mval_end[2] = {mi->imval[0], mi->imval[1]};
setCustomPoints(t, mi, mval_start, mval_end);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Setup & Handle Mouse Input
* \{ */
void initMouseInput(TransInfo *UNUSED(t),
MouseInput *mi,
const float center[2],
const int mval[2],
const bool precision)
{
mi->factor = 0;
mi->precision = precision;
mi->center[0] = center[0];
mi->center[1] = center[1];
mi->imval[0] = mval[0];
mi->imval[1] = mval[1];
mi->post = NULL;
}
static void calcSpringFactor(MouseInput *mi)
{
2012-05-09 11:24:15 +02:00
mi->factor = sqrtf(
((float)(mi->center[1] - mi->imval[1])) * ((float)(mi->center[1] - mi->imval[1])) +
((float)(mi->center[0] - mi->imval[0])) * ((float)(mi->center[0] - mi->imval[0])));
if (mi->factor == 0.0f) {
2012-06-11 00:13:17 +02:00
mi->factor = 1.0f; /* prevent Inf */
2012-05-09 11:24:15 +02:00
}
}
void initMouseInputMode(TransInfo *t, MouseInput *mi, MouseInputMode mode)
{
2019-08-16 16:54:22 +02:00
/* In case we allocate a new value. */
void *mi_data_prev = mi->data;
mi->use_virtual_mval = true;
mi->precision_factor = 1.0f / 10.0f;
switch (mode) {
2012-06-11 00:13:17 +02:00
case INPUT_VECTOR:
mi->apply = InputVector;
t->helpline = HLP_NONE;
break;
case INPUT_SPRING:
calcSpringFactor(mi);
mi->apply = InputSpring;
t->helpline = HLP_SPRING;
break;
case INPUT_SPRING_FLIP:
calcSpringFactor(mi);
mi->apply = InputSpringFlip;
t->helpline = HLP_SPRING;
break;
case INPUT_SPRING_DELTA:
calcSpringFactor(mi);
mi->apply = InputSpringDelta;
t->helpline = HLP_SPRING;
break;
2012-06-11 00:13:17 +02:00
case INPUT_ANGLE:
case INPUT_ANGLE_SPRING: {
struct InputAngle_Data *data;
mi->use_virtual_mval = false;
mi->precision_factor = 1.0f / 30.0f;
data = MEM_callocN(sizeof(struct InputAngle_Data), "angle accumulator");
data->mval_prev[0] = mi->imval[0];
data->mval_prev[1] = mi->imval[1];
mi->data = data;
if (mode == INPUT_ANGLE) {
mi->apply = InputAngle;
}
else {
calcSpringFactor(mi);
mi->apply = InputAngleSpring;
}
t->helpline = HLP_ANGLE;
break;
}
2012-06-11 00:13:17 +02:00
case INPUT_TRACKBALL:
mi->precision_factor = 1.0f / 30.0f;
2012-06-11 00:13:17 +02:00
/* factor has to become setting or so */
mi->factor = 0.01f;
mi->apply = InputTrackBall;
t->helpline = HLP_TRACKBALL;
break;
case INPUT_HORIZONTAL_RATIO:
mi->apply = InputHorizontalRatio;
t->helpline = HLP_HARROW;
break;
case INPUT_HORIZONTAL_ABSOLUTE:
mi->apply = InputHorizontalAbsolute;
t->helpline = HLP_HARROW;
break;
case INPUT_VERTICAL_RATIO:
mi->apply = InputVerticalRatio;
t->helpline = HLP_VARROW;
break;
case INPUT_VERTICAL_ABSOLUTE:
mi->apply = InputVerticalAbsolute;
t->helpline = HLP_VARROW;
break;
case INPUT_CUSTOM_RATIO:
mi->apply = InputCustomRatio;
t->helpline = HLP_CARROW;
2012-06-11 00:13:17 +02:00
break;
case INPUT_CUSTOM_RATIO_FLIP:
mi->apply = InputCustomRatioFlip;
t->helpline = HLP_CARROW;
break;
2012-06-11 00:13:17 +02:00
case INPUT_NONE:
default:
mi->apply = NULL;
break;
}
/* setup for the mouse cursor: either set a custom one,
* or hide it if it will be drawn with the helpline */
wmWindow *win = CTX_wm_window(t->context);
2018-04-28 09:01:34 +02:00
switch (t->helpline) {
2018-04-25 10:10:00 +02:00
case HLP_NONE:
/* INPUT_VECTOR, INPUT_CUSTOM_RATIO, INPUT_CUSTOM_RATIO_FLIP */
if (t->flag & T_MODAL) {
t->flag |= T_MODAL_CURSOR_SET;
WM_cursor_modal_set(win, WM_CURSOR_NSEW_SCROLL);
}
2018-04-25 10:10:00 +02:00
break;
case HLP_SPRING:
case HLP_ANGLE:
case HLP_TRACKBALL:
case HLP_HARROW:
case HLP_VARROW:
case HLP_CARROW:
if (t->flag & T_MODAL) {
t->flag |= T_MODAL_CURSOR_SET;
WM_cursor_modal_set(win, WM_CURSOR_NONE);
}
2018-04-25 10:10:00 +02:00
break;
default:
break;
}
/* if we've allocated new data, free the old data
* less hassle than checking before every alloc above */
if (mi_data_prev && (mi_data_prev != mi->data)) {
MEM_freeN(mi_data_prev);
}
}
void setInputPostFct(MouseInput *mi, void (*post)(struct TransInfo *t, float values[3]))
{
mi->post = post;
}
void applyMouseInput(TransInfo *t, MouseInput *mi, const int mval[2], float output[3])
{
double mval_db[2];
if (mi->use_virtual_mval) {
/* update accumulator */
double mval_delta[2];
mval_delta[0] = (mval[0] - mi->imval[0]) - mi->virtual_mval.prev[0];
mval_delta[1] = (mval[1] - mi->imval[1]) - mi->virtual_mval.prev[1];
mi->virtual_mval.prev[0] += mval_delta[0];
mi->virtual_mval.prev[1] += mval_delta[1];
if (mi->precision) {
2015-12-02 05:52:47 +01:00
mval_delta[0] *= (double)mi->precision_factor;
mval_delta[1] *= (double)mi->precision_factor;
}
mi->virtual_mval.accum[0] += mval_delta[0];
mi->virtual_mval.accum[1] += mval_delta[1];
mval_db[0] = mi->imval[0] + mi->virtual_mval.accum[0];
mval_db[1] = mi->imval[1] + mi->virtual_mval.accum[1];
}
else {
mval_db[0] = mval[0];
mval_db[1] = mval[1];
}
if (mi->apply != NULL) {
mi->apply(t, mi, mval_db, output);
}
2019-01-15 08:54:43 +01:00
if (!is_zero_v3(t->values_modal_offset)) {
float values_ofs[3];
if (t->con.mode & CON_APPLY) {
mul_v3_m3v3(values_ofs, t->spacemtx, t->values_modal_offset);
}
else {
copy_v3_v3(values_ofs, t->values_modal_offset);
}
add_v3_v3(t->values, values_ofs);
}
if (mi->post) {
mi->post(t, output);
}
}
2020-03-25 06:36:01 +01:00
/** \} */