tornavis/source/blender/blenkernel/intern/armature_update.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1095 lines
37 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2015 Blender Foundation.
* All rights reserved.
*
* Defines and code for core node types
*/
/** \file
* \ingroup bke
2018-08-29 17:56:08 +02:00
*/
#include "MEM_guardedalloc.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "DNA_armature_types.h"
#include "DNA_constraint_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "BKE_action.h"
#include "BKE_anim_path.h"
#include "BKE_armature.h"
#include "BKE_curve.h"
#include "BKE_displist.h"
#include "BKE_fcurve.h"
#include "BKE_object.h"
#include "BKE_scene.h"
#include "BIK_api.h"
Depsgraph: New dependency graph integration commit This commit integrates the work done so far on the new dependency graph system, where goal was to replace legacy depsgraph with the new one, supporting loads of neat features like: - More granular dependency relation nature, which solves issues with fake cycles in the dependencies. - Move towards all-animatable, by better integration of drivers into the system. - Lay down some basis for upcoming copy-on-write, overrides and so on. The new system is living side-by-side with the previous one and disabled by default, so nothing will become suddenly broken. The way to enable new depsgraph is to pass `--new-depsgraph` command line argument. It's a bit early to consider the system production-ready, there are some TODOs and issues were discovered during the merge period, they'll be addressed ASAP. But it's important to merge, because it's the only way to attract artists to really start testing this system. There are number of assorted documents related on the design of the new system: * http://wiki.blender.org/index.php/User:Aligorith/GSoC2013_Depsgraph#Design_Documents * http://wiki.blender.org/index.php/User:Nazg-gul/DependencyGraph There are also some user-related information online: * http://code.blender.org/2015/02/blender-dependency-graph-branch-for-users/ * http://code.blender.org/2015/03/more-dependency-graph-tricks/ Kudos to everyone who was involved into the project: - Joshua "Aligorith" Leung -- design specification, initial code - Lukas "lukas_t" Toenne -- integrating code into blender, with further fixes - Sergey "Sergey" "Sharybin" -- some mocking around, trying to wrap up the project and so - Bassam "slikdigit" Kurdali -- stressing the new system, reporting all the issues and recording/writing documentation. - Everyone else who i forgot to mention here :)
2015-05-12 12:05:57 +02:00
#include "DEG_depsgraph.h"
/* ********************** SPLINE IK SOLVER ******************* */
/* Temporary evaluation tree data used for Spline IK */
typedef struct tSplineIK_Tree {
struct tSplineIK_Tree *next, *prev;
int type; /* type of IK that this serves (CONSTRAINT_TYPE_KINEMATIC or ..._SPLINEIK) */
short chainlen; /* number of bones in the chain */
float totlength; /* total length of bones in the chain */
const float *points; /* parametric positions for the joints along the curve */
bPoseChannel **chain; /* chain of bones to affect using Spline IK (ordered from the tip) */
bPoseChannel *root; /* bone that is the root node of the chain */
bConstraint *con; /* constraint for this chain */
bSplineIKConstraint *ik_data; /* constraint settings for this chain */
} tSplineIK_Tree;
/* ----------- */
/* Tag the bones in the chain formed by the given bone for IK. */
static void splineik_init_tree_from_pchan(Scene *UNUSED(scene),
Object *UNUSED(ob),
bPoseChannel *pchan_tip)
{
bPoseChannel *pchan, *pchan_root = NULL;
bPoseChannel *pchan_chain[255];
bConstraint *con = NULL;
bSplineIKConstraint *ik_data = NULL;
float bone_lengths[255];
float totlength = 0.0f;
int segcount = 0;
/* Find the SplineIK constraint. */
for (con = pchan_tip->constraints.first; con; con = con->next) {
if (con->type == CONSTRAINT_TYPE_SPLINEIK) {
ik_data = con->data;
/* Target can only be a curve. */
if ((ik_data->tar == NULL) || (ik_data->tar->type != OB_CURVE)) {
continue;
}
/* Skip if disabled. */
if ((con->enforce == 0.0f) || (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF))) {
continue;
}
/* Otherwise, constraint is ok... */
break;
}
}
if (con == NULL) {
return;
}
/* Find the root bone and the chain of bones from the root to the tip.
* NOTE: this assumes that the bones are connected, but that may not be true... */
for (pchan = pchan_tip; pchan && (segcount < ik_data->chainlen);
pchan = pchan->parent, segcount++) {
/* Store this segment in the chain. */
pchan_chain[segcount] = pchan;
/* If performing rebinding, calculate the length of the bone. */
bone_lengths[segcount] = pchan->bone->length;
totlength += bone_lengths[segcount];
}
if (segcount == 0) {
return;
}
pchan_root = pchan_chain[segcount - 1];
/* Perform binding step if required. */
if ((ik_data->flag & CONSTRAINT_SPLINEIK_BOUND) == 0) {
float segmentLen = (1.0f / (float)segcount);
/* Setup new empty array for the points list. */
if (ik_data->points) {
MEM_freeN(ik_data->points);
}
ik_data->numpoints = ik_data->chainlen + 1;
ik_data->points = MEM_mallocN(sizeof(float) * ik_data->numpoints, "Spline IK Binding");
/* Bind 'tip' of chain (i.e. first joint = tip of bone with the Spline IK Constraint). */
ik_data->points[0] = 1.0f;
/* Perform binding of the joints to parametric positions along the curve based
* proportion of the total length that each bone occupies.
*/
2020-09-09 15:43:09 +02:00
for (int i = 0; i < segcount; i++) {
/* 'head' joints, traveling towards the root of the chain.
* - 2 methods; the one chosen depends on whether we've got usable lengths.
*/
if ((ik_data->flag & CONSTRAINT_SPLINEIK_EVENSPLITS) || (totlength == 0.0f)) {
/* 1) Equi-spaced joints. */
ik_data->points[i + 1] = ik_data->points[i] - segmentLen;
}
else {
/* 2) To find this point on the curve, we take a step from the previous joint
* a distance given by the proportion that this bone takes.
*/
ik_data->points[i + 1] = ik_data->points[i] - (bone_lengths[i] / totlength);
}
}
/* Spline has now been bound. */
ik_data->flag |= CONSTRAINT_SPLINEIK_BOUND;
}
/* Disallow negative values (happens with float precision). */
CLAMP_MIN(ik_data->points[segcount], 0.0f);
/* Make a new Spline-IK chain, and store it in the IK chains. */
/* TODO: we should check if there is already an IK chain on this,
* since that would take precedence... */
{
/* Make a new tree. */
tSplineIK_Tree *tree = MEM_callocN(sizeof(tSplineIK_Tree), "SplineIK Tree");
tree->type = CONSTRAINT_TYPE_SPLINEIK;
tree->chainlen = segcount;
tree->totlength = totlength;
/* Copy over the array of links to bones in the chain (from tip to root). */
tree->chain = MEM_mallocN(sizeof(bPoseChannel *) * segcount, "SplineIK Chain");
memcpy(tree->chain, pchan_chain, sizeof(bPoseChannel *) * segcount);
/* Store reference to joint position array. */
tree->points = ik_data->points;
/* Store references to different parts of the chain. */
tree->root = pchan_root;
tree->con = con;
tree->ik_data = ik_data;
/* AND! Link the tree to the root. */
BLI_addtail(&pchan_root->siktree, tree);
}
/* Mark root channel having an IK tree. */
pchan_root->flag |= POSE_IKSPLINE;
}
/* Tag which bones are members of Spline IK chains. */
static void splineik_init_tree(Scene *scene, Object *ob, float UNUSED(ctime))
{
bPoseChannel *pchan;
/* Find the tips of Spline IK chains,
* which are simply the bones which have been tagged as such. */
for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
if (pchan->constflag & PCHAN_HAS_SPLINEIK) {
splineik_init_tree_from_pchan(scene, ob, pchan);
}
}
}
/* ----------- */
typedef struct tSplineIk_EvalState {
float curve_position; /* Current position along the curve. */
float curve_scale; /* Global scale to apply to curve positions. */
float locrot_offset[4][4]; /* Bone rotation and location offset inherited from parent. */
float prev_tail_loc[3]; /* Tail location of the previous bone. */
float prev_tail_radius; /* Tail curve radius of the previous bone. */
int prev_tail_seg_idx; /* Curve segment the previous tail bone belongs to. */
} tSplineIk_EvalState;
/* Prepare data to evaluate spline IK. */
static bool splineik_evaluate_init(tSplineIK_Tree *tree, tSplineIk_EvalState *state)
{
bSplineIKConstraint *ik_data = tree->ik_data;
/* Make sure that the constraint targets are ok, to avoid crashes
* in case of a depsgraph bug or dependency cycle.
*/
if (ik_data->tar == NULL) {
return false;
}
CurveCache *cache = ik_data->tar->runtime.curve_cache;
if (ELEM(NULL, cache, cache->anim_path_accum_length)) {
return false;
}
/* Initialize the evaluation state. */
state->curve_position = 0.0f;
state->curve_scale = 1.0f;
unit_m4(state->locrot_offset);
zero_v3(state->prev_tail_loc);
state->prev_tail_radius = 1.0f;
state->prev_tail_seg_idx = 0;
/* Apply corrections for sensitivity to scaling. */
if ((ik_data->yScaleMode != CONSTRAINT_SPLINEIK_YS_FIT_CURVE) && (tree->totlength != 0.0f)) {
/* Get the current length of the curve. */
/* NOTE: This is assumed to be correct even after the curve was resized. */
const float spline_len = BKE_anim_path_get_length(cache);
/* Calculate the scale factor to multiply all the path values by so that the
* bone chain retains its current length, such that:
* maxScale * splineLen = totLength
*/
state->curve_scale = tree->totlength / spline_len;
}
return true;
}
static void apply_curve_transform(
bSplineIKConstraint *ik_data, Object *ob, float radius, float r_vec[3], float *r_radius)
{
/* Apply the curve's object-mode transforms to the position
* unless the option to allow curve to be positioned elsewhere is activated (i.e. no root).
*/
if ((ik_data->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0) {
mul_m4_v3(ik_data->tar->obmat, r_vec);
}
/* Convert the position to pose-space. */
mul_m4_v3(ob->imat, r_vec);
/* Set the new radius (it should be the average value). */
*r_radius = (radius + *r_radius) / 2;
}
/* This function positions the tail of the bone so that it preserves the length of it.
* The length of the bone can be seen as a sphere radius.
*/
static int position_tail_on_spline(bSplineIKConstraint *ik_data,
const float head_pos[3],
const float sphere_radius,
const int prev_seg_idx,
float r_tail_pos[3],
float *r_new_curve_pos,
float *r_radius)
{
2021-04-14 04:11:03 +02:00
/* This is using the tessellated curve data.
* So we are working with piece-wise linear curve segments.
* The same method is use in #BKE_where_on_path to get curve location data. */
const CurveCache *cache = ik_data->tar->runtime.curve_cache;
const BevList *bl = cache->bev.first;
BevPoint *bp = bl->bevpoints;
const float spline_len = BKE_anim_path_get_length(cache);
const float *seg_accum_len = cache->anim_path_accum_length;
int max_seg_idx = BKE_anim_path_get_array_size(cache) - 1;
/* Convert our initial intersection point guess to a point index.
* If the curve was a straight line, then pointEnd would be the correct location.
* So make it our first initial guess.
*/
const float guessed_len = *r_new_curve_pos * spline_len;
BLI_assert(prev_seg_idx >= 0);
int cur_seg_idx = prev_seg_idx;
while (cur_seg_idx < max_seg_idx && guessed_len > seg_accum_len[cur_seg_idx]) {
cur_seg_idx++;
}
int bp_idx = cur_seg_idx + 1;
bp = bp + bp_idx;
bool is_cyclic = bl->poly >= 0;
BevPoint *prev_bp = bp - 1;
2021-04-14 04:11:03 +02:00
/* Go to the next tessellated curve point until we cross to outside of the sphere. */
while (len_v3v3(head_pos, bp->vec) < sphere_radius) {
if (bp_idx > max_seg_idx) {
/* We are outside the defined curve. We will now extrapolate the intersection point. */
break;
}
prev_bp = bp;
if (is_cyclic && bp_idx == max_seg_idx) {
/* Wrap around to the start point.
* Don't set the bp_idx to zero here as we use it to get the segment index later.
*/
bp = bl->bevpoints;
}
else {
bp++;
}
bp_idx++;
}
float isect_1[3], isect_2[3];
/* Calculate the intersection point. */
int ret = isect_line_sphere_v3(prev_bp->vec, bp->vec, head_pos, sphere_radius, isect_1, isect_2);
if (ret > 0) {
/* Because of how `isect_line_sphere_v3` works, we know that `isect_1` contains the
* intersection point we want. And it will always intersect as we go from inside to outside
* of the sphere.
*/
copy_v3_v3(r_tail_pos, isect_1);
}
else {
/* Couldn't find an intersection point. This means that the floating point
* values are too small and thus the intersection check fails.
* So assume that the distance is so small that tail_pos == head_pos.
*/
copy_v3_v3(r_tail_pos, head_pos);
}
cur_seg_idx = bp_idx - 2;
float prev_seg_len = 0;
if (cur_seg_idx < 0) {
cur_seg_idx = 0;
prev_seg_len = 0;
}
else {
prev_seg_len = seg_accum_len[cur_seg_idx];
}
/* Convert the point back into the 0-1 interpolation range. */
const float isect_seg_len = len_v3v3(prev_bp->vec, r_tail_pos);
const float frac = isect_seg_len / len_v3v3(prev_bp->vec, bp->vec);
*r_new_curve_pos = (prev_seg_len + isect_seg_len) / spline_len;
if (*r_new_curve_pos > 1.0f) {
*r_radius = bp->radius;
}
else {
*r_radius = (1.0f - frac) * prev_bp->radius + frac * bp->radius;
}
return cur_seg_idx;
}
/* Evaluate spline IK for a given bone. */
static void splineik_evaluate_bone(
tSplineIK_Tree *tree, Object *ob, bPoseChannel *pchan, int index, tSplineIk_EvalState *state)
{
bSplineIKConstraint *ik_data = tree->ik_data;
if (pchan->bone->length < FLT_EPSILON) {
/* Only move the bone position with zero length bones. */
float bone_pos[4], dir[3], rad;
BKE_where_on_path(ik_data->tar, state->curve_position, bone_pos, dir, NULL, &rad, NULL);
apply_curve_transform(ik_data, ob, rad, bone_pos, &rad);
copy_v3_v3(pchan->pose_mat[3], bone_pos);
copy_v3_v3(pchan->pose_head, bone_pos);
copy_v3_v3(pchan->pose_tail, bone_pos);
pchan->flag |= POSE_DONE;
return;
}
float orig_head[3], orig_tail[3], pose_head[3], pose_tail[3];
float base_pose_mat[3][3], pose_mat[3][3];
float spline_vec[3], scale_fac, radius = 1.0f;
float tail_blend_fac = 0.0f;
mul_v3_m4v3(pose_head, state->locrot_offset, pchan->pose_head);
mul_v3_m4v3(pose_tail, state->locrot_offset, pchan->pose_tail);
copy_v3_v3(orig_head, pose_head);
/* First, adjust the point positions on the curve. */
float curveLen = tree->points[index] - tree->points[index + 1];
float bone_len = len_v3v3(pose_head, pose_tail);
float point_start = state->curve_position;
float pose_scale = bone_len / pchan->bone->length;
float base_scale = 1.0f;
if (ik_data->yScaleMode == CONSTRAINT_SPLINEIK_YS_ORIGINAL) {
/* Carry over the bone Y scale to the curve range. */
base_scale = pose_scale;
}
float point_end = point_start + curveLen * base_scale * state->curve_scale;
state->curve_position = point_end;
/* Step 1: determine the positions for the endpoints of the bone. */
if (point_start < 1.0f) {
float vec[4], dir[3], rad;
radius = 0.0f;
/* Calculate head position. */
if (point_start == 0.0f) {
/* Start of the path. We have no previous tail position to copy. */
BKE_where_on_path(ik_data->tar, point_start, vec, dir, NULL, &rad, NULL);
}
else {
copy_v3_v3(vec, state->prev_tail_loc);
rad = state->prev_tail_radius;
}
radius = rad;
copy_v3_v3(pose_head, vec);
apply_curve_transform(ik_data, ob, rad, pose_head, &radius);
/* Calculate tail position. */
if (ik_data->yScaleMode != CONSTRAINT_SPLINEIK_YS_FIT_CURVE) {
float sphere_radius;
if (ik_data->yScaleMode == CONSTRAINT_SPLINEIK_YS_ORIGINAL) {
sphere_radius = bone_len;
}
else {
/* Don't take bone scale into account. */
sphere_radius = pchan->bone->length;
}
/* Calculate the tail position with sphere curve intersection. */
state->prev_tail_seg_idx = position_tail_on_spline(
ik_data, vec, sphere_radius, state->prev_tail_seg_idx, pose_tail, &point_end, &rad);
state->prev_tail_radius = rad;
copy_v3_v3(state->prev_tail_loc, pose_tail);
apply_curve_transform(ik_data, ob, rad, pose_tail, &radius);
state->curve_position = point_end;
}
else {
/* Scale to fit curve end position. */
if (BKE_where_on_path(ik_data->tar, point_end, vec, dir, NULL, &rad, NULL)) {
state->prev_tail_radius = rad;
copy_v3_v3(state->prev_tail_loc, vec);
copy_v3_v3(pose_tail, vec);
apply_curve_transform(ik_data, ob, rad, pose_tail, &radius);
}
}
/* Determine if the bone should still be affected by SplineIK.
* This makes it so that the bone slowly becomes poseable again the further it rolls off the
2021-04-14 04:11:03 +02:00
* curve. When the whole bone has rolled off the curve, the IK constraint will not influence it
* anymore.
*/
if (point_end >= 1.0f) {
/* Blending factor depends on the amount of the bone still left on the chain. */
tail_blend_fac = (1.0f - point_start) / (point_end - point_start);
}
else {
tail_blend_fac = 1.0f;
}
}
/* Step 2: determine the implied transform from these endpoints.
* - splineVec: the vector direction that the spline applies on the bone.
* - scaleFac: the factor that the bone length is scaled by to get the desired amount.
*/
sub_v3_v3v3(spline_vec, pose_tail, pose_head);
scale_fac = len_v3(spline_vec) / pchan->bone->length;
/* Step 3: compute the shortest rotation needed
* to map from the bone rotation to the current axis.
* - this uses the same method as is used for the Damped Track Constraint
* (see the code there for details).
*/
{
float dmat[3][3], rmat[3][3];
float raxis[3], rangle;
/* Compute the raw rotation matrix from the bone's current matrix by extracting only the
* orientation-relevant axes, and normalizing them.
*/
mul_m3_m4m4(base_pose_mat, state->locrot_offset, pchan->pose_mat);
normalize_m3_m3(rmat, base_pose_mat);
/* Also, normalize the orientation imposed by the bone,
* now that we've extracted the scale factor. */
normalize_v3(spline_vec);
/* Calculate smallest axis-angle rotation necessary for getting from the
* current orientation of the bone, to the spline-imposed direction.
*/
cross_v3_v3v3(raxis, rmat[1], spline_vec);
/* Check if the old and new bone direction is parallel to each other.
* If they are, then 'raxis' should be near zero and we will have to get the rotation axis in
* some other way.
*/
float norm = normalize_v3(raxis);
if (norm < FLT_EPSILON) {
/* Can't use cross product! */
int order[3] = {0, 1, 2};
float tmp_axis[3];
zero_v3(tmp_axis);
axis_sort_v3(spline_vec, order);
/* Use the second largest axis as the basis for the rotation axis. */
tmp_axis[order[1]] = 1.0f;
cross_v3_v3v3(raxis, tmp_axis, spline_vec);
}
rangle = dot_v3v3(rmat[1], spline_vec);
CLAMP(rangle, -1.0f, 1.0f);
rangle = acosf(rangle);
/* Multiply the magnitude of the angle by the influence of the constraint to
* control the influence of the SplineIK effect.
*/
rangle *= tree->con->enforce * tail_blend_fac;
/* Construct rotation matrix from the axis-angle rotation found above.
* - This call takes care to make sure that the axis provided is a unit vector first.
*/
axis_angle_to_mat3(dmat, raxis, rangle);
/* Combine these rotations so that the y-axis of the bone is now aligned as the
* spline dictates, while still maintaining roll control from the existing bone animation. */
mul_m3_m3m3(pose_mat, dmat, rmat);
/* Attempt to reduce shearing, though I doubt this'll really help too much now... */
normalize_m3(pose_mat);
mul_m3_m3m3(base_pose_mat, dmat, base_pose_mat);
/* Apply rotation to the accumulated parent transform. */
mul_m4_m3m4(state->locrot_offset, dmat, state->locrot_offset);
}
/* Step 4: Set the scaling factors for the axes. */
/* Always multiply the y-axis by the scaling factor to get the correct length. */
mul_v3_fl(pose_mat[1], scale_fac);
/* After that, apply x/z scaling modes. */
if (ik_data->xzScaleMode != CONSTRAINT_SPLINEIK_XZS_NONE) {
/* First, apply the original scale if enabled. */
if (ik_data->xzScaleMode == CONSTRAINT_SPLINEIK_XZS_ORIGINAL ||
(ik_data->flag & CONSTRAINT_SPLINEIK_USE_ORIGINAL_SCALE) != 0) {
float scale;
/* X-axis scale. */
scale = len_v3(pchan->pose_mat[0]);
mul_v3_fl(pose_mat[0], scale);
/* Z-axis scale. */
scale = len_v3(pchan->pose_mat[2]);
mul_v3_fl(pose_mat[2], scale);
/* Adjust the scale factor used for volume preservation
* to consider the pre-IK scaling as the initial volume. */
scale_fac /= pose_scale;
}
/* Apply volume preservation. */
switch (ik_data->xzScaleMode) {
case CONSTRAINT_SPLINEIK_XZS_INVERSE: {
/* Old 'volume preservation' method using the inverse scale. */
float scale;
/* Calculate volume preservation factor which is
* basically the inverse of the y-scaling factor.
*/
if (fabsf(scale_fac) != 0.0f) {
scale = 1.0f / fabsf(scale_fac);
2021-02-05 06:23:34 +01:00
/* We need to clamp this within sensible values. */
/* NOTE: these should be fine for now, but should get sanitized in future. */
CLAMP(scale, 0.0001f, 100000.0f);
}
else {
scale = 1.0f;
}
/* Apply the scaling. */
mul_v3_fl(pose_mat[0], scale);
mul_v3_fl(pose_mat[2], scale);
break;
}
case CONSTRAINT_SPLINEIK_XZS_VOLUMETRIC: {
/* Improved volume preservation based on the Stretch To constraint. */
float final_scale;
/* As the basis for volume preservation, we use the inverse scale factor... */
if (fabsf(scale_fac) != 0.0f) {
/* NOTE: The method here is taken wholesale from the Stretch To constraint. */
float bulge = powf(1.0f / fabsf(scale_fac), ik_data->bulge);
if (bulge > 1.0f) {
if (ik_data->flag & CONSTRAINT_SPLINEIK_USE_BULGE_MAX) {
float bulge_max = max_ff(ik_data->bulge_max, 1.0f);
float hard = min_ff(bulge, bulge_max);
float range = bulge_max - 1.0f;
float scale = (range > 0.0f) ? 1.0f / range : 0.0f;
float soft = 1.0f + range * atanf((bulge - 1.0f) * scale) / (float)M_PI_2;
bulge = interpf(soft, hard, ik_data->bulge_smooth);
}
}
if (bulge < 1.0f) {
if (ik_data->flag & CONSTRAINT_SPLINEIK_USE_BULGE_MIN) {
float bulge_min = CLAMPIS(ik_data->bulge_min, 0.0f, 1.0f);
float hard = max_ff(bulge, bulge_min);
float range = 1.0f - bulge_min;
float scale = (range > 0.0f) ? 1.0f / range : 0.0f;
float soft = 1.0f - range * atanf((1.0f - bulge) * scale) / (float)M_PI_2;
bulge = interpf(soft, hard, ik_data->bulge_smooth);
}
}
/* Compute scale factor for xz axes from this value. */
final_scale = sqrtf(bulge);
}
else {
/* No scaling, so scale factor is simple. */
final_scale = 1.0f;
}
2021-02-05 06:23:34 +01:00
/* Apply the scaling (assuming normalized scale). */
mul_v3_fl(pose_mat[0], final_scale);
mul_v3_fl(pose_mat[2], final_scale);
break;
}
}
}
/* Finally, multiply the x and z scaling by the radius of the curve too,
* to allow automatic scales to get tweaked still.
*/
if ((ik_data->flag & CONSTRAINT_SPLINEIK_NO_CURVERAD) == 0) {
mul_v3_fl(pose_mat[0], radius);
mul_v3_fl(pose_mat[2], radius);
}
/* Blend the scaling of the matrix according to the influence. */
sub_m3_m3m3(pose_mat, pose_mat, base_pose_mat);
madd_m3_m3m3fl(pose_mat, base_pose_mat, pose_mat, tree->con->enforce * tail_blend_fac);
/* Step 5: Set the location of the bone in the matrix. */
if (ik_data->flag & CONSTRAINT_SPLINEIK_NO_ROOT) {
/* When the 'no-root' option is affected, the chain can retain
* the shape but be moved elsewhere.
*/
copy_v3_v3(pose_head, orig_head);
}
else if (tree->con->enforce < 1.0f) {
/* When the influence is too low:
* - Blend the positions for the 'root' bone.
* - Stick to the parent for any other.
*/
if (index < tree->chainlen - 1) {
copy_v3_v3(pose_head, orig_head);
}
else {
interp_v3_v3v3(pose_head, orig_head, pose_head, tree->con->enforce);
}
}
/* Finally, store the new transform. */
copy_m4_m3(pchan->pose_mat, pose_mat);
copy_v3_v3(pchan->pose_mat[3], pose_head);
copy_v3_v3(pchan->pose_head, pose_head);
mul_v3_mat3_m4v3(orig_tail, state->locrot_offset, pchan->pose_tail);
/* Recalculate tail, as it's now outdated after the head gets adjusted above! */
BKE_pose_where_is_bone_tail(pchan);
/* Update the offset in the accumulated parent transform. */
sub_v3_v3v3(state->locrot_offset[3], pchan->pose_tail, orig_tail);
/* Done! */
pchan->flag |= POSE_DONE;
}
/* Evaluate the chain starting from the nominated bone */
static void splineik_execute_tree(
struct Depsgraph *depsgraph, Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime)
{
tSplineIK_Tree *tree;
/* for each pose-tree, execute it if it is spline, otherwise just free it */
while ((tree = pchan_root->siktree.first) != NULL) {
/* Firstly, calculate the bone matrix the standard way,
* since this is needed for roll control. */
2020-09-09 15:43:09 +02:00
for (int i = tree->chainlen - 1; i >= 0; i--) {
BKE_pose_where_is_bone(depsgraph, scene, ob, tree->chain[i], ctime, 1);
}
/* After that, evaluate the actual Spline IK, unless there are missing dependencies. */
tSplineIk_EvalState state;
if (splineik_evaluate_init(tree, &state)) {
/* Walk over each bone in the chain, calculating the effects of spline IK
* - the chain is traversed in the opposite order to storage order
* (i.e. parent to children) so that dependencies are correct
*/
2020-09-09 15:43:09 +02:00
for (int i = tree->chainlen - 1; i >= 0; i--) {
bPoseChannel *pchan = tree->chain[i];
splineik_evaluate_bone(tree, ob, pchan, i, &state);
}
}
/* free the tree info specific to SplineIK trees now */
if (tree->chain) {
MEM_freeN(tree->chain);
}
/* free this tree */
BLI_freelinkN(&pchan_root->siktree, tree);
}
}
void BKE_pose_splineik_init_tree(Scene *scene, Object *ob, float ctime)
{
splineik_init_tree(scene, ob, ctime);
}
void BKE_splineik_execute_tree(
struct Depsgraph *depsgraph, Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime)
{
splineik_execute_tree(depsgraph, scene, ob, pchan_root, ctime);
}
/* *************** Depsgraph evaluation callbacks ************ */
void BKE_pose_pchan_index_rebuild(bPose *pose)
{
MEM_SAFE_FREE(pose->chan_array);
const int num_channels = BLI_listbase_count(&pose->chanbase);
pose->chan_array = MEM_malloc_arrayN(num_channels, sizeof(bPoseChannel *), "pose->chan_array");
int pchan_index = 0;
for (bPoseChannel *pchan = pose->chanbase.first; pchan != NULL; pchan = pchan->next) {
pose->chan_array[pchan_index++] = pchan;
}
}
BLI_INLINE bPoseChannel *pose_pchan_get_indexed(Object *ob, int pchan_index)
{
bPose *pose = ob->pose;
BLI_assert(pose != NULL);
BLI_assert(pose->chan_array != NULL);
BLI_assert(pchan_index >= 0);
BLI_assert(pchan_index < MEM_allocN_len(pose->chan_array) / sizeof(bPoseChannel *));
return pose->chan_array[pchan_index];
}
void BKE_pose_eval_init(struct Depsgraph *depsgraph, Scene *UNUSED(scene), Object *object)
{
bPose *pose = object->pose;
BLI_assert(pose != NULL);
DEG_debug_print_eval(depsgraph, __func__, object->id.name, object);
BLI_assert(object->type == OB_ARMATURE);
/* We demand having proper pose. */
BLI_assert(object->pose != NULL);
BLI_assert((object->pose->flag & POSE_RECALC) == 0);
/* imat is needed for solvers. */
invert_m4_m4(object->imat, object->obmat);
/* clear flags */
for (bPoseChannel *pchan = pose->chanbase.first; pchan != NULL; pchan = pchan->next) {
pchan->flag &= ~(POSE_DONE | POSE_CHAIN | POSE_IKTREE | POSE_IKSPLINE);
/* Free B-Bone shape data cache if it's not a B-Bone. */
if (pchan->bone == NULL || pchan->bone->segments <= 1) {
BKE_pose_channel_free_bbone_cache(&pchan->runtime);
}
}
BLI_assert(pose->chan_array != NULL || BLI_listbase_is_empty(&pose->chanbase));
if (object->proxy != NULL) {
object->proxy->proxy_from = object;
}
}
void BKE_pose_eval_init_ik(struct Depsgraph *depsgraph, Scene *scene, Object *object)
{
2018-12-10 15:42:18 +01:00
DEG_debug_print_eval(depsgraph, __func__, object->id.name, object);
BLI_assert(object->type == OB_ARMATURE);
const float ctime = BKE_scene_frame_get(scene); /* not accurate... */
2018-12-10 15:42:18 +01:00
bArmature *armature = (bArmature *)object->data;
if (armature->flag & ARM_RESTPOS) {
return;
}
/* construct the IK tree (standard IK) */
BIK_init_tree(depsgraph, scene, object, ctime);
/* construct the Spline IK trees
2018-11-14 02:53:15 +01:00
* - this is not integrated as an IK plugin, since it should be able
2018-12-10 15:42:18 +01:00
* to function in conjunction with standard IK. */
BKE_pose_splineik_init_tree(scene, object, ctime);
}
void BKE_pose_eval_bone(struct Depsgraph *depsgraph, Scene *scene, Object *object, int pchan_index)
{
const bArmature *armature = (bArmature *)object->data;
if (armature->edbo != NULL) {
return;
}
2018-12-10 15:42:18 +01:00
bPoseChannel *pchan = pose_pchan_get_indexed(object, pchan_index);
DEG_debug_print_eval_subdata(
2018-12-10 15:42:18 +01:00
depsgraph, __func__, object->id.name, object, "pchan", pchan->name, pchan);
BLI_assert(object->type == OB_ARMATURE);
if (armature->flag & ARM_RESTPOS) {
Bone *bone = pchan->bone;
if (bone) {
copy_m4_m4(pchan->pose_mat, bone->arm_mat);
copy_v3_v3(pchan->pose_head, bone->arm_head);
copy_v3_v3(pchan->pose_tail, bone->arm_tail);
}
}
else {
2018-12-10 15:42:18 +01:00
/* TODO(sergey): Currently if there are constraints full transform is
* being evaluated in BKE_pose_constraints_evaluate. */
if (pchan->constraints.first == NULL) {
if (pchan->flag & POSE_IKTREE || pchan->flag & POSE_IKSPLINE) {
/* pass */
}
else {
if ((pchan->flag & POSE_DONE) == 0) {
/* TODO(sergey): Use time source node for time. */
float ctime = BKE_scene_frame_get(scene); /* not accurate... */
2018-12-10 15:42:18 +01:00
BKE_pose_where_is_bone(depsgraph, scene, object, pchan, ctime, 1);
}
}
}
}
}
void BKE_pose_constraints_evaluate(struct Depsgraph *depsgraph,
Scene *scene,
2018-12-10 15:42:18 +01:00
Object *object,
int pchan_index)
{
const bArmature *armature = (bArmature *)object->data;
if (armature->edbo != NULL) {
return;
}
2018-12-10 15:42:18 +01:00
bPoseChannel *pchan = pose_pchan_get_indexed(object, pchan_index);
DEG_debug_print_eval_subdata(
2018-12-10 15:42:18 +01:00
depsgraph, __func__, object->id.name, object, "pchan", pchan->name, pchan);
if (armature->flag & ARM_RESTPOS) {
return;
}
if (pchan->flag & POSE_IKTREE || pchan->flag & POSE_IKSPLINE) {
/* IK are being solved separately/ */
}
else {
if ((pchan->flag & POSE_DONE) == 0) {
float ctime = BKE_scene_frame_get(scene); /* not accurate... */
2018-12-10 15:42:18 +01:00
BKE_pose_where_is_bone(depsgraph, scene, object, pchan, ctime, 1);
}
}
}
static void pose_channel_flush_to_orig_if_needed(struct Depsgraph *depsgraph,
struct Object *object,
bPoseChannel *pchan)
{
if (!DEG_is_active(depsgraph)) {
return;
}
const bArmature *armature = (bArmature *)object->data;
if (armature->edbo != NULL) {
return;
}
bPoseChannel *pchan_orig = pchan->orig_pchan;
/* TODO(sergey): Using BKE_pose_copy_pchan_result() introduces T70901, but why? */
copy_m4_m4(pchan_orig->pose_mat, pchan->pose_mat);
copy_m4_m4(pchan_orig->chan_mat, pchan->chan_mat);
copy_v3_v3(pchan_orig->pose_head, pchan->pose_mat[3]);
copy_m4_m4(pchan_orig->constinv, pchan->constinv);
copy_v3_v3(pchan_orig->pose_tail, pchan->pose_tail);
}
void BKE_pose_bone_done(struct Depsgraph *depsgraph, struct Object *object, int pchan_index)
{
const bArmature *armature = (bArmature *)object->data;
if (armature->edbo != NULL) {
return;
}
2018-12-10 15:42:18 +01:00
bPoseChannel *pchan = pose_pchan_get_indexed(object, pchan_index);
float imat[4][4];
DEG_debug_print_eval_subdata(
depsgraph, __func__, object->id.name, object, "pchan", pchan->name, pchan);
if (pchan->bone) {
invert_m4_m4(imat, pchan->bone->arm_mat);
mul_m4_m4m4(pchan->chan_mat, pchan->pose_mat, imat);
if (!(pchan->bone->flag & BONE_NO_DEFORM)) {
mat4_to_dquat(&pchan->runtime.deform_dual_quat, pchan->bone->arm_mat, pchan->chan_mat);
}
}
pose_channel_flush_to_orig_if_needed(depsgraph, object, pchan);
if (DEG_is_active(depsgraph)) {
bPoseChannel *pchan_orig = pchan->orig_pchan;
if (pchan->bone == NULL || pchan->bone->segments <= 1) {
BKE_pose_channel_free_bbone_cache(&pchan_orig->runtime);
}
}
}
void BKE_pose_eval_bbone_segments(struct Depsgraph *depsgraph,
2018-12-10 15:42:18 +01:00
struct Object *object,
int pchan_index)
{
const bArmature *armature = (bArmature *)object->data;
if (armature->edbo != NULL) {
return;
}
2018-12-10 15:42:18 +01:00
bPoseChannel *pchan = pose_pchan_get_indexed(object, pchan_index);
DEG_debug_print_eval_subdata(
depsgraph, __func__, object->id.name, object, "pchan", pchan->name, pchan);
if (pchan->bone != NULL && pchan->bone->segments > 1) {
2018-12-02 04:32:31 +01:00
BKE_pchan_bbone_segments_cache_compute(pchan);
if (DEG_is_active(depsgraph)) {
2018-12-02 04:32:31 +01:00
BKE_pchan_bbone_segments_cache_copy(pchan->orig_pchan, pchan);
}
}
}
void BKE_pose_iktree_evaluate(struct Depsgraph *depsgraph,
Scene *scene,
2018-12-10 15:42:18 +01:00
Object *object,
int rootchan_index)
{
const bArmature *armature = (bArmature *)object->data;
if (armature->edbo != NULL) {
return;
}
2018-12-10 15:42:18 +01:00
bPoseChannel *rootchan = pose_pchan_get_indexed(object, rootchan_index);
DEG_debug_print_eval_subdata(
2018-12-10 15:42:18 +01:00
depsgraph, __func__, object->id.name, object, "rootchan", rootchan->name, rootchan);
BLI_assert(object->type == OB_ARMATURE);
const float ctime = BKE_scene_frame_get(scene); /* not accurate... */
2018-12-10 15:42:18 +01:00
if (armature->flag & ARM_RESTPOS) {
return;
}
2018-12-10 15:42:18 +01:00
BIK_execute_tree(depsgraph, scene, object, rootchan, ctime);
}
void BKE_pose_splineik_evaluate(struct Depsgraph *depsgraph,
Scene *scene,
2018-12-10 15:42:18 +01:00
Object *object,
int rootchan_index)
{
const bArmature *armature = (bArmature *)object->data;
if (armature->edbo != NULL) {
return;
}
2018-12-10 15:42:18 +01:00
bPoseChannel *rootchan = pose_pchan_get_indexed(object, rootchan_index);
DEG_debug_print_eval_subdata(
2018-12-10 15:42:18 +01:00
depsgraph, __func__, object->id.name, object, "rootchan", rootchan->name, rootchan);
BLI_assert(object->type == OB_ARMATURE);
const float ctime = BKE_scene_frame_get(scene); /* not accurate... */
2018-12-10 15:42:18 +01:00
if (armature->flag & ARM_RESTPOS) {
return;
}
2018-12-10 15:42:18 +01:00
BKE_splineik_execute_tree(depsgraph, scene, object, rootchan, ctime);
}
static void pose_eval_cleanup_common(Object *object)
{
bPose *pose = object->pose;
BLI_assert(pose != NULL);
BLI_assert(pose->chan_array != NULL || BLI_listbase_is_empty(&pose->chanbase));
UNUSED_VARS_NDEBUG(pose);
}
void BKE_pose_eval_done(struct Depsgraph *depsgraph, Object *object)
{
bPose *pose = object->pose;
BLI_assert(pose != NULL);
UNUSED_VARS_NDEBUG(pose);
DEG_debug_print_eval(depsgraph, __func__, object->id.name, object);
BLI_assert(object->type == OB_ARMATURE);
}
void BKE_pose_eval_cleanup(struct Depsgraph *depsgraph, Scene *scene, Object *object)
{
bPose *pose = object->pose;
BLI_assert(pose != NULL);
UNUSED_VARS_NDEBUG(pose);
const float ctime = BKE_scene_frame_get(scene); /* not accurate... */
DEG_debug_print_eval(depsgraph, __func__, object->id.name, object);
BLI_assert(object->type == OB_ARMATURE);
/* Release the IK tree. */
BIK_release_tree(scene, object, ctime);
pose_eval_cleanup_common(object);
}
void BKE_pose_eval_proxy_init(struct Depsgraph *depsgraph, Object *object)
{
BLI_assert(ID_IS_LINKED(object) && object->proxy_from != NULL);
DEG_debug_print_eval(depsgraph, __func__, object->id.name, object);
2019-04-14 21:18:00 +02:00
BLI_assert(object->pose->chan_array != NULL || BLI_listbase_is_empty(&object->pose->chanbase));
}
void BKE_pose_eval_proxy_done(struct Depsgraph *depsgraph, Object *object)
{
BLI_assert(ID_IS_LINKED(object) && object->proxy_from != NULL);
DEG_debug_print_eval(depsgraph, __func__, object->id.name, object);
}
void BKE_pose_eval_proxy_cleanup(struct Depsgraph *depsgraph, Object *object)
{
BLI_assert(ID_IS_LINKED(object) && object->proxy_from != NULL);
DEG_debug_print_eval(depsgraph, __func__, object->id.name, object);
pose_eval_cleanup_common(object);
}
void BKE_pose_eval_proxy_copy_bone(struct Depsgraph *depsgraph, Object *object, int pchan_index)
{
const bArmature *armature = (bArmature *)object->data;
if (armature->edbo != NULL) {
return;
}
BLI_assert(ID_IS_LINKED(object) && object->proxy_from != NULL);
bPoseChannel *pchan = pose_pchan_get_indexed(object, pchan_index);
BLI_assert(pchan != NULL);
DEG_debug_print_eval_subdata(
depsgraph, __func__, object->id.name, object, "pchan", pchan->name, pchan);
2019-08-16 16:54:22 +02:00
/* TODO(sergey): Use indexed lookup, once it's guaranteed to be kept
* around for the time while proxies are evaluating.
*/
#if 0
bPoseChannel *pchan_from = pose_pchan_get_indexed(object->proxy_from, pchan_index);
#else
bPoseChannel *pchan_from = BKE_pose_channel_find_name(object->proxy_from->pose, pchan->name);
#endif
if (pchan_from == NULL) {
printf(
"WARNING: Could not find bone %s in linked ID anymore... "
"You should delete and re-generate your proxy.\n",
pchan->name);
return;
}
2019-10-14 10:45:35 +02:00
BKE_pose_copy_pchan_result(pchan, pchan_from);
copy_dq_dq(&pchan->runtime.deform_dual_quat, &pchan_from->runtime.deform_dual_quat);
2018-12-02 04:32:31 +01:00
BKE_pchan_bbone_segments_cache_copy(pchan, pchan_from);
pose_channel_flush_to_orig_if_needed(depsgraph, object, pchan);
}