tornavis/source/blender/blenkernel/intern/armature_update.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1062 lines
36 KiB
C++
Raw Normal View History

/* SPDX-FileCopyrightText: 2015 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bke
2018-08-29 17:56:08 +02:00
*/
#include "MEM_guardedalloc.h"
#include "BLI_listbase.h"
#include "BLI_math_matrix.h"
#include "BLI_math_rotation.h"
#include "BLI_math_vector.h"
#include "BLI_utildefines.h"
#include "DNA_armature_types.h"
#include "DNA_constraint_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "BKE_action.h"
#include "BKE_anim_path.h"
#include "BKE_armature.hh"
#include "BKE_curve.hh"
#include "BKE_displist.h"
#include "BKE_fcurve.h"
#include "BKE_object.hh"
#include "BKE_object_types.hh"
#include "BKE_scene.h"
#include "BIK_api.h"
#include "DEG_depsgraph.hh"
/* ********************** SPLINE IK SOLVER ******************* */
/* Temporary evaluation tree data used for Spline IK */
struct tSplineIK_Tree {
tSplineIK_Tree *next, *prev;
int type; /* type of IK that this serves (CONSTRAINT_TYPE_KINEMATIC or ..._SPLINEIK) */
short chainlen; /* number of bones in the chain */
float totlength; /* total length of bones in the chain */
const float *points; /* parametric positions for the joints along the curve */
bPoseChannel **chain; /* chain of bones to affect using Spline IK (ordered from the tip) */
bPoseChannel *root; /* bone that is the root node of the chain */
bConstraint *con; /* constraint for this chain */
bSplineIKConstraint *ik_data; /* constraint settings for this chain */
};
/* ----------- */
/* Tag the bones in the chain formed by the given bone for IK. */
static void splineik_init_tree_from_pchan(Scene * /*scene*/,
Object * /*ob*/,
bPoseChannel *pchan_tip)
{
bPoseChannel *pchan, *pchan_root = nullptr;
bPoseChannel *pchan_chain[255];
bConstraint *con = nullptr;
bSplineIKConstraint *ik_data = nullptr;
float bone_lengths[255];
float totlength = 0.0f;
int segcount = 0;
/* Find the SplineIK constraint. */
for (con = static_cast<bConstraint *>(pchan_tip->constraints.first); con; con = con->next) {
if (con->type == CONSTRAINT_TYPE_SPLINEIK) {
ik_data = static_cast<bSplineIKConstraint *>(con->data);
/* Target can only be a curve. */
if ((ik_data->tar == nullptr) || (ik_data->tar->type != OB_CURVES_LEGACY)) {
continue;
}
/* Skip if disabled. */
if ((con->enforce == 0.0f) || (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF))) {
continue;
}
/* Otherwise, constraint is ok... */
break;
}
}
if (con == nullptr) {
return;
}
/* Find the root bone and the chain of bones from the root to the tip.
* NOTE: this assumes that the bones are connected, but that may not be true... */
for (pchan = pchan_tip; pchan && (segcount < ik_data->chainlen);
pchan = pchan->parent, segcount++) {
/* Store this segment in the chain. */
pchan_chain[segcount] = pchan;
/* If performing rebinding, calculate the length of the bone. */
bone_lengths[segcount] = pchan->bone->length;
totlength += bone_lengths[segcount];
}
if (segcount == 0) {
return;
}
pchan_root = pchan_chain[segcount - 1];
/* Perform binding step if required. */
if ((ik_data->flag & CONSTRAINT_SPLINEIK_BOUND) == 0) {
float segmentLen = (1.0f / float(segcount));
/* Setup new empty array for the points list. */
if (ik_data->points) {
MEM_freeN(ik_data->points);
}
ik_data->numpoints = ik_data->chainlen + 1;
ik_data->points = static_cast<float *>(
MEM_mallocN(sizeof(float) * ik_data->numpoints, "Spline IK Binding"));
/* Bind 'tip' of chain (i.e. first joint = tip of bone with the Spline IK Constraint). */
ik_data->points[0] = 1.0f;
/* Perform binding of the joints to parametric positions along the curve based
* proportion of the total length that each bone occupies.
*/
2020-09-09 15:43:09 +02:00
for (int i = 0; i < segcount; i++) {
/* 'head' joints, traveling towards the root of the chain.
* - 2 methods; the one chosen depends on whether we've got usable lengths.
*/
if ((ik_data->flag & CONSTRAINT_SPLINEIK_EVENSPLITS) || (totlength == 0.0f)) {
/* 1) Equi-spaced joints. */
ik_data->points[i + 1] = ik_data->points[i] - segmentLen;
}
else {
/* 2) To find this point on the curve, we take a step from the previous joint
* a distance given by the proportion that this bone takes.
*/
ik_data->points[i + 1] = ik_data->points[i] - (bone_lengths[i] / totlength);
}
}
/* Spline has now been bound. */
ik_data->flag |= CONSTRAINT_SPLINEIK_BOUND;
}
/* Disallow negative values (happens with float precision). */
CLAMP_MIN(ik_data->points[segcount], 0.0f);
/* Make a new Spline-IK chain, and store it in the IK chains. */
/* TODO: we should check if there is already an IK chain on this,
* since that would take precedence... */
{
/* Make a new tree. */
tSplineIK_Tree *tree = static_cast<tSplineIK_Tree *>(
MEM_callocN(sizeof(tSplineIK_Tree), "SplineIK Tree"));
tree->type = CONSTRAINT_TYPE_SPLINEIK;
tree->chainlen = segcount;
tree->totlength = totlength;
/* Copy over the array of links to bones in the chain (from tip to root). */
tree->chain = static_cast<bPoseChannel **>(
MEM_mallocN(sizeof(bPoseChannel *) * segcount, "SplineIK Chain"));
memcpy(tree->chain, pchan_chain, sizeof(bPoseChannel *) * segcount);
/* Store reference to joint position array. */
tree->points = ik_data->points;
/* Store references to different parts of the chain. */
tree->root = pchan_root;
tree->con = con;
tree->ik_data = ik_data;
/* AND! Link the tree to the root. */
BLI_addtail(&pchan_root->siktree, tree);
}
/* Mark root channel having an IK tree. */
pchan_root->flag |= POSE_IKSPLINE;
}
/* Tag which bones are members of Spline IK chains. */
static void splineik_init_tree(Scene *scene, Object *ob, float /*ctime*/)
{
/* Find the tips of Spline IK chains,
* which are simply the bones which have been tagged as such. */
LISTBASE_FOREACH (bPoseChannel *, pchan, &ob->pose->chanbase) {
if (pchan->constflag & PCHAN_HAS_SPLINEIK) {
splineik_init_tree_from_pchan(scene, ob, pchan);
}
}
}
/* ----------- */
struct tSplineIk_EvalState {
float curve_position; /* Current position along the curve. */
float curve_scale; /* Global scale to apply to curve positions. */
float locrot_offset[4][4]; /* Bone rotation and location offset inherited from parent. */
float prev_tail_loc[3]; /* Tail location of the previous bone. */
float prev_tail_radius; /* Tail curve radius of the previous bone. */
int prev_tail_seg_idx; /* Curve segment the previous tail bone belongs to. */
};
/* Prepare data to evaluate spline IK. */
static bool splineik_evaluate_init(tSplineIK_Tree *tree, tSplineIk_EvalState *state)
{
bSplineIKConstraint *ik_data = tree->ik_data;
/* Make sure that the constraint targets are ok, to avoid crashes
* in case of a depsgraph bug or dependency cycle.
*/
if (ik_data->tar == nullptr) {
return false;
}
CurveCache *cache = ik_data->tar->runtime->curve_cache;
if (ELEM(nullptr, cache, cache->anim_path_accum_length)) {
return false;
}
/* Initialize the evaluation state. */
state->curve_position = 0.0f;
state->curve_scale = 1.0f;
unit_m4(state->locrot_offset);
zero_v3(state->prev_tail_loc);
state->prev_tail_radius = 1.0f;
state->prev_tail_seg_idx = 0;
/* Apply corrections for sensitivity to scaling. */
if ((ik_data->yScaleMode != CONSTRAINT_SPLINEIK_YS_FIT_CURVE) && (tree->totlength != 0.0f)) {
/* Get the current length of the curve. */
/* NOTE: This is assumed to be correct even after the curve was resized. */
const float spline_len = BKE_anim_path_get_length(cache);
/* Calculate the scale factor to multiply all the path values by so that the
* bone chain retains its current length, such that:
* maxScale * splineLen = totLength
*/
state->curve_scale = tree->totlength / spline_len;
}
return true;
}
static void apply_curve_transform(
bSplineIKConstraint *ik_data, Object *ob, float radius, float r_vec[3], float *r_radius)
{
/* Apply the curve's object-mode transforms to the position
* unless the option to allow curve to be positioned elsewhere is activated (i.e. no root).
*/
if ((ik_data->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0) {
mul_m4_v3(ik_data->tar->object_to_world, r_vec);
}
/* Convert the position to pose-space. */
mul_m4_v3(ob->world_to_object, r_vec);
/* Set the new radius (it should be the average value). */
*r_radius = (radius + *r_radius) / 2;
}
static float dist_to_sphere_shell(const float sphere_origin[3],
const float sphere_radius,
const float point[3])
{
float vec[3];
sub_v3_v3v3(vec, sphere_origin, point);
return sphere_radius - len_v3(vec);
}
/* This function positions the tail of the bone so that it preserves the length of it.
* The length of the bone can be seen as a sphere radius.
*/
static int position_tail_on_spline(bSplineIKConstraint *ik_data,
const float head_pos[3],
const float sphere_radius,
int prev_seg_idx,
float r_tail_pos[3],
float *r_new_curve_pos,
float *r_radius)
{
2021-04-14 04:11:03 +02:00
/* This is using the tessellated curve data.
* So we are working with piece-wise linear curve segments.
* The same method is used in #BKE_where_on_path to get curve location data. */
const CurveCache *cache = ik_data->tar->runtime->curve_cache;
const float *seg_accum_len = cache->anim_path_accum_length;
int max_seg_idx = BKE_anim_path_get_array_size(cache) - 1;
/* Make an initial guess of where our intersection point will be.
* If the curve was a straight line, then the fraction passed in r_new_curve_pos
* would be the correct location.
* So make it our first initial guess.
*/
const float spline_len = BKE_anim_path_get_length(cache);
const float guessed_len = *r_new_curve_pos * spline_len;
BLI_assert(prev_seg_idx >= 0);
int cur_seg_idx = prev_seg_idx;
while (cur_seg_idx < max_seg_idx && guessed_len > seg_accum_len[cur_seg_idx]) {
cur_seg_idx++;
}
/* Convert the segment to bev points.
* For example, the segment with index 0 will have bev points 0 and 1.
*/
int bp_idx = cur_seg_idx + 1;
const BevList *bl = static_cast<const BevList *>(cache->bev.first);
bool is_cyclic = bl->poly >= 0;
BevPoint *bp = bl->bevpoints;
BevPoint *prev_bp;
bp = bp + bp_idx;
prev_bp = bp - 1;
2021-04-14 04:11:03 +02:00
/* Go to the next tessellated curve point until we cross to outside of the sphere. */
while (len_v3v3(head_pos, bp->vec) < sphere_radius) {
if (bp_idx > max_seg_idx) {
/* We are outside the defined curve. We will now extrapolate the intersection point. */
break;
}
prev_bp = bp;
if (is_cyclic && bp_idx == max_seg_idx) {
/* Wrap around to the start point.
* Don't set the bp_idx to zero here as we use it to get the segment index later.
*/
bp = bl->bevpoints;
}
else {
bp++;
}
bp_idx++;
}
/* Calculate the intersection point using the secant root finding method */
float x0 = 0.0f, x1 = 1.0f, x2 = 0.5f;
float x0_point[3], x1_point[3], start_p[3];
float epsilon = max_fff(1.0f, len_v3(head_pos), len_v3(bp->vec)) * FLT_EPSILON;
if (prev_seg_idx == bp_idx - 1) {
/* The intersection lies inside the same segment as the last point.
* Set the last point to be the start search point so we minimize the risks of going backwards
* on the curve.
*/
copy_v3_v3(start_p, head_pos);
}
else {
copy_v3_v3(start_p, prev_bp->vec);
}
for (int i = 0; i < 10; i++) {
interp_v3_v3v3(x0_point, start_p, bp->vec, x0);
interp_v3_v3v3(x1_point, start_p, bp->vec, x1);
float f_x0 = dist_to_sphere_shell(head_pos, sphere_radius, x0_point);
float f_x1 = dist_to_sphere_shell(head_pos, sphere_radius, x1_point);
if (fabsf(f_x1) <= epsilon || f_x0 == f_x1) {
break;
}
x2 = x1 - f_x1 * (x1 - x0) / (f_x1 - f_x0);
x0 = x1;
x1 = x2;
}
/* Found the bone tail position! */
copy_v3_v3(r_tail_pos, x1_point);
/* Because our intersection point lies inside the current segment,
* Convert our bevpoint index back to the previous segment index (-2 instead of -1).
* This is because our actual location is prev_seg_len + isect_seg_len.
*/
prev_seg_idx = bp_idx - 2;
float prev_seg_len = 0;
if (prev_seg_idx < 0) {
prev_seg_idx = 0;
prev_seg_len = 0;
}
else {
prev_seg_len = seg_accum_len[prev_seg_idx];
}
/* Convert the point back into the 0-1 interpolation range. */
const float isect_seg_len = len_v3v3(prev_bp->vec, r_tail_pos);
const float frac = isect_seg_len / len_v3v3(prev_bp->vec, bp->vec);
*r_new_curve_pos = (prev_seg_len + isect_seg_len) / spline_len;
if (*r_new_curve_pos > 1.0f) {
*r_radius = bp->radius;
}
else {
*r_radius = (1.0f - frac) * prev_bp->radius + frac * bp->radius;
}
/* Return the current segment. */
return bp_idx - 1;
}
/* Evaluate spline IK for a given bone. */
static void splineik_evaluate_bone(
tSplineIK_Tree *tree, Object *ob, bPoseChannel *pchan, int index, tSplineIk_EvalState *state)
{
bSplineIKConstraint *ik_data = tree->ik_data;
if (pchan->bone->length < FLT_EPSILON) {
/* Only move the bone position with zero length bones. */
float bone_pos[4], rad;
BKE_where_on_path(
ik_data->tar, state->curve_position, bone_pos, nullptr, nullptr, &rad, nullptr);
apply_curve_transform(ik_data, ob, rad, bone_pos, &rad);
copy_v3_v3(pchan->pose_mat[3], bone_pos);
copy_v3_v3(pchan->pose_head, bone_pos);
copy_v3_v3(pchan->pose_tail, bone_pos);
pchan->flag |= POSE_DONE;
return;
}
float orig_head[3], orig_tail[3], pose_head[3], pose_tail[3];
float base_pose_mat[3][3], pose_mat[3][3];
float spline_vec[3], scale_fac, radius = 1.0f;
float tail_blend_fac = 0.0f;
mul_v3_m4v3(pose_head, state->locrot_offset, pchan->pose_head);
mul_v3_m4v3(pose_tail, state->locrot_offset, pchan->pose_tail);
copy_v3_v3(orig_head, pose_head);
/* First, adjust the point positions on the curve. */
float curveLen = tree->points[index] - tree->points[index + 1];
float bone_len = len_v3v3(pose_head, pose_tail);
float point_start = state->curve_position;
float pose_scale = bone_len / pchan->bone->length;
float base_scale = 1.0f;
if (ik_data->yScaleMode == CONSTRAINT_SPLINEIK_YS_ORIGINAL) {
/* Carry over the bone Y scale to the curve range. */
base_scale = pose_scale;
}
float point_end = point_start + curveLen * base_scale * state->curve_scale;
state->curve_position = point_end;
/* Step 1: determine the positions for the endpoints of the bone. */
if (point_start < 1.0f) {
float vec[4], rad;
radius = 0.0f;
/* Calculate head position. */
if (point_start == 0.0f) {
/* Start of the path. We have no previous tail position to copy. */
BKE_where_on_path(ik_data->tar, point_start, vec, nullptr, nullptr, &rad, nullptr);
}
else {
copy_v3_v3(vec, state->prev_tail_loc);
rad = state->prev_tail_radius;
}
radius = rad;
copy_v3_v3(pose_head, vec);
apply_curve_transform(ik_data, ob, rad, pose_head, &radius);
/* Calculate tail position. */
if (ik_data->yScaleMode != CONSTRAINT_SPLINEIK_YS_FIT_CURVE) {
float sphere_radius;
if (ik_data->yScaleMode == CONSTRAINT_SPLINEIK_YS_ORIGINAL) {
sphere_radius = bone_len;
}
else {
/* Don't take bone scale into account. */
sphere_radius = pchan->bone->length;
}
/* Calculate the tail position with sphere curve intersection. */
state->prev_tail_seg_idx = position_tail_on_spline(
ik_data, vec, sphere_radius, state->prev_tail_seg_idx, pose_tail, &point_end, &rad);
state->prev_tail_radius = rad;
copy_v3_v3(state->prev_tail_loc, pose_tail);
apply_curve_transform(ik_data, ob, rad, pose_tail, &radius);
state->curve_position = point_end;
}
else {
/* Scale to fit curve end position. */
if (BKE_where_on_path(ik_data->tar, point_end, vec, nullptr, nullptr, &rad, nullptr)) {
state->prev_tail_radius = rad;
copy_v3_v3(state->prev_tail_loc, vec);
copy_v3_v3(pose_tail, vec);
apply_curve_transform(ik_data, ob, rad, pose_tail, &radius);
}
}
/* Determine if the bone should still be affected by SplineIK.
* This makes it so that the bone slowly becomes poseable again the further it rolls off the
2021-04-14 04:11:03 +02:00
* curve. When the whole bone has rolled off the curve, the IK constraint will not influence it
* anymore.
*/
if (point_end >= 1.0f) {
/* Blending factor depends on the amount of the bone still left on the chain. */
tail_blend_fac = (1.0f - point_start) / (point_end - point_start);
}
else {
tail_blend_fac = 1.0f;
}
}
/* Step 2: determine the implied transform from these endpoints.
* - splineVec: the vector direction that the spline applies on the bone.
* - scaleFac: the factor that the bone length is scaled by to get the desired amount.
*/
sub_v3_v3v3(spline_vec, pose_tail, pose_head);
scale_fac = len_v3(spline_vec) / pchan->bone->length;
/* Step 3: compute the shortest rotation needed
* to map from the bone rotation to the current axis.
* - this uses the same method as is used for the Damped Track Constraint
* (see the code there for details).
*/
{
float dmat[3][3], rmat[3][3];
float raxis[3], rangle;
/* Compute the raw rotation matrix from the bone's current matrix by extracting only the
* orientation-relevant axes, and normalizing them.
*/
mul_m3_m4m4(base_pose_mat, state->locrot_offset, pchan->pose_mat);
normalize_m3_m3(rmat, base_pose_mat);
/* Also, normalize the orientation imposed by the bone,
* now that we've extracted the scale factor. */
normalize_v3(spline_vec);
/* Calculate smallest axis-angle rotation necessary for getting from the
* current orientation of the bone, to the spline-imposed direction.
*/
cross_v3_v3v3(raxis, rmat[1], spline_vec);
/* Check if the old and new bone direction is parallel to each other.
* If they are, then 'raxis' should be near zero and we will have to get the rotation axis in
* some other way.
*/
float norm = normalize_v3(raxis);
if (norm < FLT_EPSILON) {
/* Can't use cross product! */
int order[3] = {0, 1, 2};
float tmp_axis[3];
zero_v3(tmp_axis);
axis_sort_v3(spline_vec, order);
/* Use the second largest axis as the basis for the rotation axis. */
tmp_axis[order[1]] = 1.0f;
cross_v3_v3v3(raxis, tmp_axis, spline_vec);
}
rangle = dot_v3v3(rmat[1], spline_vec);
CLAMP(rangle, -1.0f, 1.0f);
rangle = acosf(rangle);
/* Multiply the magnitude of the angle by the influence of the constraint to
* control the influence of the SplineIK effect.
*/
rangle *= tree->con->enforce * tail_blend_fac;
/* Construct rotation matrix from the axis-angle rotation found above.
* - This call takes care to make sure that the axis provided is a unit vector first.
*/
axis_angle_to_mat3(dmat, raxis, rangle);
/* Combine these rotations so that the y-axis of the bone is now aligned as the
* spline dictates, while still maintaining roll control from the existing bone animation. */
mul_m3_m3m3(pose_mat, dmat, rmat);
2021-07-07 04:55:19 +02:00
/* Attempt to reduce shearing, though I doubt this will really help too much now. */
normalize_m3(pose_mat);
mul_m3_m3m3(base_pose_mat, dmat, base_pose_mat);
/* Apply rotation to the accumulated parent transform. */
mul_m4_m3m4(state->locrot_offset, dmat, state->locrot_offset);
}
/* Step 4: Set the scaling factors for the axes. */
/* Always multiply the y-axis by the scaling factor to get the correct length. */
mul_v3_fl(pose_mat[1], scale_fac);
/* After that, apply x/z scaling modes. */
if (ik_data->xzScaleMode != CONSTRAINT_SPLINEIK_XZS_NONE) {
/* First, apply the original scale if enabled. */
if (ik_data->xzScaleMode == CONSTRAINT_SPLINEIK_XZS_ORIGINAL ||
(ik_data->flag & CONSTRAINT_SPLINEIK_USE_ORIGINAL_SCALE) != 0)
{
float scale;
/* X-axis scale. */
scale = len_v3(pchan->pose_mat[0]);
mul_v3_fl(pose_mat[0], scale);
/* Z-axis scale. */
scale = len_v3(pchan->pose_mat[2]);
mul_v3_fl(pose_mat[2], scale);
/* Adjust the scale factor used for volume preservation
* to consider the pre-IK scaling as the initial volume. */
scale_fac /= pose_scale;
}
/* Apply volume preservation. */
switch (ik_data->xzScaleMode) {
case CONSTRAINT_SPLINEIK_XZS_INVERSE: {
/* Old 'volume preservation' method using the inverse scale. */
float scale;
/* Calculate volume preservation factor which is
* basically the inverse of the y-scaling factor.
*/
if (fabsf(scale_fac) != 0.0f) {
scale = 1.0f / fabsf(scale_fac);
2021-02-05 06:23:34 +01:00
/* We need to clamp this within sensible values. */
/* NOTE: these should be fine for now, but should get sanitized in future. */
CLAMP(scale, 0.0001f, 100000.0f);
}
else {
scale = 1.0f;
}
/* Apply the scaling. */
mul_v3_fl(pose_mat[0], scale);
mul_v3_fl(pose_mat[2], scale);
break;
}
case CONSTRAINT_SPLINEIK_XZS_VOLUMETRIC: {
/* Improved volume preservation based on the Stretch To constraint. */
float final_scale;
/* As the basis for volume preservation, we use the inverse scale factor... */
if (fabsf(scale_fac) != 0.0f) {
/* NOTE: The method here is taken wholesale from the Stretch To constraint. */
float bulge = powf(1.0f / fabsf(scale_fac), ik_data->bulge);
if (bulge > 1.0f) {
if (ik_data->flag & CONSTRAINT_SPLINEIK_USE_BULGE_MAX) {
float bulge_max = max_ff(ik_data->bulge_max, 1.0f);
float hard = min_ff(bulge, bulge_max);
float range = bulge_max - 1.0f;
float scale = (range > 0.0f) ? 1.0f / range : 0.0f;
float soft = 1.0f + range * atanf((bulge - 1.0f) * scale) / float(M_PI_2);
bulge = interpf(soft, hard, ik_data->bulge_smooth);
}
}
if (bulge < 1.0f) {
if (ik_data->flag & CONSTRAINT_SPLINEIK_USE_BULGE_MIN) {
float bulge_min = CLAMPIS(ik_data->bulge_min, 0.0f, 1.0f);
float hard = max_ff(bulge, bulge_min);
float range = 1.0f - bulge_min;
float scale = (range > 0.0f) ? 1.0f / range : 0.0f;
float soft = 1.0f - range * atanf((1.0f - bulge) * scale) / float(M_PI_2);
bulge = interpf(soft, hard, ik_data->bulge_smooth);
}
}
/* Compute scale factor for xz axes from this value. */
final_scale = sqrtf(bulge);
}
else {
/* No scaling, so scale factor is simple. */
final_scale = 1.0f;
}
2021-02-05 06:23:34 +01:00
/* Apply the scaling (assuming normalized scale). */
mul_v3_fl(pose_mat[0], final_scale);
mul_v3_fl(pose_mat[2], final_scale);
break;
}
}
}
/* Finally, multiply the x and z scaling by the radius of the curve too,
* to allow automatic scales to get tweaked still.
*/
if ((ik_data->flag & CONSTRAINT_SPLINEIK_NO_CURVERAD) == 0) {
mul_v3_fl(pose_mat[0], radius);
mul_v3_fl(pose_mat[2], radius);
}
/* Blend the scaling of the matrix according to the influence. */
sub_m3_m3m3(pose_mat, pose_mat, base_pose_mat);
madd_m3_m3m3fl(pose_mat, base_pose_mat, pose_mat, tree->con->enforce * tail_blend_fac);
/* Step 5: Set the location of the bone in the matrix. */
if (ik_data->flag & CONSTRAINT_SPLINEIK_NO_ROOT) {
/* When the 'no-root' option is affected, the chain can retain
* the shape but be moved elsewhere.
*/
copy_v3_v3(pose_head, orig_head);
}
else if (tree->con->enforce < 1.0f) {
/* When the influence is too low:
* - Blend the positions for the 'root' bone.
* - Stick to the parent for any other.
*/
if (index < tree->chainlen - 1) {
copy_v3_v3(pose_head, orig_head);
}
else {
interp_v3_v3v3(pose_head, orig_head, pose_head, tree->con->enforce);
}
}
/* Finally, store the new transform. */
copy_m4_m3(pchan->pose_mat, pose_mat);
copy_v3_v3(pchan->pose_mat[3], pose_head);
copy_v3_v3(pchan->pose_head, pose_head);
mul_v3_mat3_m4v3(orig_tail, state->locrot_offset, pchan->pose_tail);
/* Recalculate tail, as it's now outdated after the head gets adjusted above! */
BKE_pose_where_is_bone_tail(pchan);
/* Update the offset in the accumulated parent transform. */
sub_v3_v3v3(state->locrot_offset[3], pchan->pose_tail, orig_tail);
/* Done! */
pchan->flag |= POSE_DONE;
}
/* Evaluate the chain starting from the nominated bone */
static void splineik_execute_tree(
Depsgraph *depsgraph, Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime)
{
tSplineIK_Tree *tree;
/* for each pose-tree, execute it if it is spline, otherwise just free it */
while ((tree = static_cast<tSplineIK_Tree *>(pchan_root->siktree.first)) != nullptr) {
/* Firstly, calculate the bone matrix the standard way,
* since this is needed for roll control. */
2020-09-09 15:43:09 +02:00
for (int i = tree->chainlen - 1; i >= 0; i--) {
BKE_pose_where_is_bone(depsgraph, scene, ob, tree->chain[i], ctime, true);
}
/* After that, evaluate the actual Spline IK, unless there are missing dependencies. */
tSplineIk_EvalState state;
if (splineik_evaluate_init(tree, &state)) {
/* Walk over each bone in the chain, calculating the effects of spline IK
* - the chain is traversed in the opposite order to storage order
* (i.e. parent to children) so that dependencies are correct
*/
2020-09-09 15:43:09 +02:00
for (int i = tree->chainlen - 1; i >= 0; i--) {
bPoseChannel *pchan = tree->chain[i];
splineik_evaluate_bone(tree, ob, pchan, i, &state);
}
}
/* free the tree info specific to SplineIK trees now */
if (tree->chain) {
MEM_freeN(tree->chain);
}
/* free this tree */
BLI_freelinkN(&pchan_root->siktree, tree);
}
}
void BKE_pose_splineik_init_tree(Scene *scene, Object *ob, float ctime)
{
splineik_init_tree(scene, ob, ctime);
}
void BKE_splineik_execute_tree(
Depsgraph *depsgraph, Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime)
{
splineik_execute_tree(depsgraph, scene, ob, pchan_root, ctime);
}
/* *************** Depsgraph evaluation callbacks ************ */
void BKE_pose_pchan_index_rebuild(bPose *pose)
{
MEM_SAFE_FREE(pose->chan_array);
const int num_channels = BLI_listbase_count(&pose->chanbase);
pose->chan_array = static_cast<bPoseChannel **>(
MEM_malloc_arrayN(num_channels, sizeof(bPoseChannel *), "pose->chan_array"));
int pchan_index = 0;
for (bPoseChannel *pchan = static_cast<bPoseChannel *>(pose->chanbase.first); pchan != nullptr;
pchan = pchan->next)
{
pose->chan_array[pchan_index++] = pchan;
}
}
BLI_INLINE bPoseChannel *pose_pchan_get_indexed(Object *ob, int pchan_index)
{
bPose *pose = ob->pose;
BLI_assert(pose != nullptr);
BLI_assert(pose->chan_array != nullptr);
BLI_assert(pchan_index >= 0);
BLI_assert(pchan_index < MEM_allocN_len(pose->chan_array) / sizeof(bPoseChannel *));
return pose->chan_array[pchan_index];
}
void BKE_pose_eval_init(Depsgraph *depsgraph, Scene * /*scene*/, Object *object)
{
bPose *pose = object->pose;
BLI_assert(pose != nullptr);
DEG_debug_print_eval(depsgraph, __func__, object->id.name, object);
BLI_assert(object->type == OB_ARMATURE);
/* We demand having proper pose. */
BLI_assert(object->pose != nullptr);
BLI_assert((object->pose->flag & POSE_RECALC) == 0);
/* world_to_object is needed for solvers. */
invert_m4_m4(object->world_to_object, object->object_to_world);
/* clear flags */
for (bPoseChannel *pchan = static_cast<bPoseChannel *>(pose->chanbase.first); pchan != nullptr;
pchan = pchan->next)
{
pchan->flag &= ~(POSE_DONE | POSE_CHAIN | POSE_IKTREE | POSE_IKSPLINE);
/* Free B-Bone shape data cache if it's not a B-Bone. */
if (pchan->bone == nullptr || pchan->bone->segments <= 1) {
BKE_pose_channel_free_bbone_cache(&pchan->runtime);
}
}
BLI_assert(pose->chan_array != nullptr || BLI_listbase_is_empty(&pose->chanbase));
}
void BKE_pose_eval_init_ik(Depsgraph *depsgraph, Scene *scene, Object *object)
{
2018-12-10 15:42:18 +01:00
DEG_debug_print_eval(depsgraph, __func__, object->id.name, object);
BLI_assert(object->type == OB_ARMATURE);
const float ctime = BKE_scene_ctime_get(scene); /* not accurate... */
2018-12-10 15:42:18 +01:00
bArmature *armature = (bArmature *)object->data;
if (armature->flag & ARM_RESTPOS) {
return;
}
/* construct the IK tree (standard IK) */
BIK_init_tree(depsgraph, scene, object, ctime);
/* construct the Spline IK trees
2018-11-14 02:53:15 +01:00
* - this is not integrated as an IK plugin, since it should be able
* to function in conjunction with standard IK. */
2018-12-10 15:42:18 +01:00
BKE_pose_splineik_init_tree(scene, object, ctime);
}
void BKE_pose_eval_bone(Depsgraph *depsgraph, Scene *scene, Object *object, int pchan_index)
{
const bArmature *armature = (bArmature *)object->data;
if (armature->edbo != nullptr) {
return;
}
2018-12-10 15:42:18 +01:00
bPoseChannel *pchan = pose_pchan_get_indexed(object, pchan_index);
DEG_debug_print_eval_subdata(
2018-12-10 15:42:18 +01:00
depsgraph, __func__, object->id.name, object, "pchan", pchan->name, pchan);
BLI_assert(object->type == OB_ARMATURE);
if (armature->flag & ARM_RESTPOS) {
Bone *bone = pchan->bone;
if (bone) {
copy_m4_m4(pchan->pose_mat, bone->arm_mat);
copy_v3_v3(pchan->pose_head, bone->arm_head);
copy_v3_v3(pchan->pose_tail, bone->arm_tail);
}
}
else {
2018-12-10 15:42:18 +01:00
/* TODO(sergey): Currently if there are constraints full transform is
* being evaluated in BKE_pose_constraints_evaluate. */
if (pchan->constraints.first == nullptr) {
if (pchan->flag & POSE_IKTREE || pchan->flag & POSE_IKSPLINE) {
/* pass */
}
else {
if ((pchan->flag & POSE_DONE) == 0) {
/* TODO(sergey): Use time source node for time. */
float ctime = BKE_scene_ctime_get(scene); /* not accurate... */
BKE_pose_where_is_bone(depsgraph, scene, object, pchan, ctime, true);
}
}
}
}
}
void BKE_pose_constraints_evaluate(Depsgraph *depsgraph,
Scene *scene,
2018-12-10 15:42:18 +01:00
Object *object,
int pchan_index)
{
const bArmature *armature = (bArmature *)object->data;
if (armature->edbo != nullptr) {
return;
}
2018-12-10 15:42:18 +01:00
bPoseChannel *pchan = pose_pchan_get_indexed(object, pchan_index);
DEG_debug_print_eval_subdata(
2018-12-10 15:42:18 +01:00
depsgraph, __func__, object->id.name, object, "pchan", pchan->name, pchan);
if (armature->flag & ARM_RESTPOS) {
return;
}
if (pchan->flag & POSE_IKTREE || pchan->flag & POSE_IKSPLINE) {
/* IK are being solved separately/ */
}
else {
if ((pchan->flag & POSE_DONE) == 0) {
float ctime = BKE_scene_ctime_get(scene); /* not accurate... */
BKE_pose_where_is_bone(depsgraph, scene, object, pchan, ctime, true);
}
}
}
static void pose_channel_flush_to_orig_if_needed(Depsgraph *depsgraph,
Object *object,
bPoseChannel *pchan)
{
if (!DEG_is_active(depsgraph)) {
return;
}
const bArmature *armature = (bArmature *)object->data;
if (armature->edbo != nullptr) {
return;
}
bPoseChannel *pchan_orig = pchan->orig_pchan;
/* TODO(sergey): Using BKE_pose_copy_pchan_result() introduces #70901, but why? */
copy_m4_m4(pchan_orig->pose_mat, pchan->pose_mat);
copy_m4_m4(pchan_orig->chan_mat, pchan->chan_mat);
copy_v3_v3(pchan_orig->pose_head, pchan->pose_mat[3]);
copy_m4_m4(pchan_orig->constinv, pchan->constinv);
copy_v3_v3(pchan_orig->pose_tail, pchan->pose_tail);
Anim: enable visual keying of IK-influenced bones Enable visual keying of bones that are influenced by an IK constraint. This wasn't possible before, as the visual keying system only checked constraints on the bone itself, and not whether the bone was part of an IK chain. This commit introduces a new `bPoseChannel::constflag` value `PCHAN_INFLUENCED_BY_IK` that is set whenever the pose bone is part of an IK chain. The `pchan->constflag` field is computed during depsgraph evaluation. If the depsgraph is active, it is now also written back to the original pchan, so that it can be used in the "should visual keying be used" function. Fixes: #76791 "Different results when keyframing visual transforms and applying transforms manually on IK constraint". Note that visually keying does *not* copy the visual pose to the current pose. Furthermore, when visually keying only part of the IK chain, the result of re-evaluating the IK constraint (for example by moving the scene forward and then backward by one frame) may still produce a different result, as the IK chain now has a different start orientation. Note that commit explicitly does not cover Spline IK constraints. They can introduce heavy shear, especially with the default settings, which cannot be represented by keys on loc/rot/scale. For historical reference: 876cfc837e2f065fa370940ca578983d84c48a11 introduces the 'use visual keying' preference option, where Blender automatically chooses whether or not to use visual keying. This is why there is a function at all that determines whether to use visual keying or not.
2023-09-25 14:37:22 +02:00
pchan_orig->constflag = pchan->constflag;
}
void BKE_pose_bone_done(Depsgraph *depsgraph, Object *object, int pchan_index)
{
const bArmature *armature = (bArmature *)object->data;
if (armature->edbo != nullptr) {
return;
}
2018-12-10 15:42:18 +01:00
bPoseChannel *pchan = pose_pchan_get_indexed(object, pchan_index);
float imat[4][4];
DEG_debug_print_eval_subdata(
depsgraph, __func__, object->id.name, object, "pchan", pchan->name, pchan);
if (pchan->bone) {
invert_m4_m4(imat, pchan->bone->arm_mat);
mul_m4_m4m4(pchan->chan_mat, pchan->pose_mat, imat);
if (!(pchan->bone->flag & BONE_NO_DEFORM)) {
mat4_to_dquat(&pchan->runtime.deform_dual_quat, pchan->bone->arm_mat, pchan->chan_mat);
}
}
pose_channel_flush_to_orig_if_needed(depsgraph, object, pchan);
if (DEG_is_active(depsgraph)) {
bPoseChannel *pchan_orig = pchan->orig_pchan;
if (pchan->bone == nullptr || pchan->bone->segments <= 1) {
BKE_pose_channel_free_bbone_cache(&pchan_orig->runtime);
}
}
}
void BKE_pose_eval_bbone_segments(Depsgraph *depsgraph, Object *object, int pchan_index)
{
const bArmature *armature = (bArmature *)object->data;
if (armature->edbo != nullptr) {
return;
}
2018-12-10 15:42:18 +01:00
bPoseChannel *pchan = pose_pchan_get_indexed(object, pchan_index);
DEG_debug_print_eval_subdata(
depsgraph, __func__, object->id.name, object, "pchan", pchan->name, pchan);
if (pchan->bone != nullptr && pchan->bone->segments > 1) {
2018-12-02 04:32:31 +01:00
BKE_pchan_bbone_segments_cache_compute(pchan);
if (DEG_is_active(depsgraph)) {
2018-12-02 04:32:31 +01:00
BKE_pchan_bbone_segments_cache_copy(pchan->orig_pchan, pchan);
}
}
}
void BKE_pose_iktree_evaluate(Depsgraph *depsgraph,
Scene *scene,
2018-12-10 15:42:18 +01:00
Object *object,
int rootchan_index)
{
const bArmature *armature = (bArmature *)object->data;
if (armature->edbo != nullptr) {
return;
}
2018-12-10 15:42:18 +01:00
bPoseChannel *rootchan = pose_pchan_get_indexed(object, rootchan_index);
DEG_debug_print_eval_subdata(
2018-12-10 15:42:18 +01:00
depsgraph, __func__, object->id.name, object, "rootchan", rootchan->name, rootchan);
BLI_assert(object->type == OB_ARMATURE);
const float ctime = BKE_scene_ctime_get(scene); /* not accurate... */
2018-12-10 15:42:18 +01:00
if (armature->flag & ARM_RESTPOS) {
return;
}
2018-12-10 15:42:18 +01:00
BIK_execute_tree(depsgraph, scene, object, rootchan, ctime);
}
void BKE_pose_splineik_evaluate(Depsgraph *depsgraph,
Scene *scene,
2018-12-10 15:42:18 +01:00
Object *object,
int rootchan_index)
{
const bArmature *armature = (bArmature *)object->data;
if (armature->edbo != nullptr) {
return;
}
2018-12-10 15:42:18 +01:00
bPoseChannel *rootchan = pose_pchan_get_indexed(object, rootchan_index);
DEG_debug_print_eval_subdata(
2018-12-10 15:42:18 +01:00
depsgraph, __func__, object->id.name, object, "rootchan", rootchan->name, rootchan);
BLI_assert(object->type == OB_ARMATURE);
const float ctime = BKE_scene_ctime_get(scene); /* not accurate... */
2018-12-10 15:42:18 +01:00
if (armature->flag & ARM_RESTPOS) {
return;
}
2018-12-10 15:42:18 +01:00
BKE_splineik_execute_tree(depsgraph, scene, object, rootchan, ctime);
}
static void pose_eval_cleanup_common(Object *object)
{
bPose *pose = object->pose;
BLI_assert(pose != nullptr);
BLI_assert(pose->chan_array != nullptr || BLI_listbase_is_empty(&pose->chanbase));
UNUSED_VARS_NDEBUG(pose);
}
void BKE_pose_eval_done(Depsgraph *depsgraph, Object *object)
{
bPose *pose = object->pose;
BLI_assert(pose != nullptr);
UNUSED_VARS_NDEBUG(pose);
DEG_debug_print_eval(depsgraph, __func__, object->id.name, object);
BLI_assert(object->type == OB_ARMATURE);
}
void BKE_pose_eval_cleanup(Depsgraph *depsgraph, Scene *scene, Object *object)
{
bPose *pose = object->pose;
BLI_assert(pose != nullptr);
UNUSED_VARS_NDEBUG(pose);
const float ctime = BKE_scene_ctime_get(scene); /* not accurate... */
DEG_debug_print_eval(depsgraph, __func__, object->id.name, object);
BLI_assert(object->type == OB_ARMATURE);
/* Release the IK tree. */
BIK_release_tree(scene, object, ctime);
pose_eval_cleanup_common(object);
}